Global Regularity of the Logarithmically Supercritical MHD System in Two-dimensional Space

Min Cheng ${ }^{1, \dagger}$

Abstract

In this paper, we study the global regularity of logarithmically supercritical MHD equations in 2 dimensional, in which the dissipation terms are $-\mu \Lambda^{2 \alpha} u$ and $-\nu \mathcal{L}^{2 \beta} b$. We show that global regular solutions in the cases $0<\alpha<\frac{1}{2}, \beta>1,3 \alpha+2 \beta>3$.

Keywords Logarithmically supercritical, MHD system, Global regularity.
MSC(2010) 35Q35, 35B65, 76D05.

1. Introduction

We consider the two-dimensional logarithmically supercritical magnetohydrodynamics (MHD) system:

$$
\begin{align*}
& u_{t}+u \cdot \nabla u+\nabla \pi+\mu \Lambda^{2 \alpha} u-b \cdot \nabla b=0 \tag{1.1}\\
& b_{t}+u \cdot \nabla b+\nu \mathcal{L}^{2 \beta} b-b \cdot \nabla u=0 \tag{1.2}\\
& (u, b)(x, 0)=\left(u_{0}, b_{0}\right) \text { in } \mathbb{R}^{2} \tag{1.3}\\
& \operatorname{div} u=\operatorname{div} b=0 \tag{1.4}
\end{align*}
$$

where $u=u(x, t) \in \mathbb{R}^{2}$ is the unknown velocity field, $b=b(x, t) \in \mathbb{R}^{2}$ is the magnetic field, and $\pi=\pi(x, t) \in \mathbb{R}$ represents the pressure. $\alpha, \beta \geq 0$ are real parameters. $\Lambda=(-\Delta)^{1 / 2}$ is defined in terms of the Fourier transform $\widehat{\widehat{\Lambda f}}(\xi)=|\xi| \widehat{f}(\xi)$, and $\mathcal{L}^{2 \beta}$ defined through a Fourier transform,

$$
\widehat{\mathcal{L}^{2 \beta}} f(\xi)=m(\xi) \hat{f}(\xi), m(\xi)=\frac{|\xi|^{2 \beta}}{g^{2}(|\xi|)}, \beta \in \mathbb{R}^{+}
$$

with $g: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$a radially symmetric, non-decreasing function such that $g \geq 1$.
When

$$
\mathcal{L}^{2 \beta}=\Lambda^{2 \beta}
$$

For the system (1.1)-(1.4), We identify the case $\mu=\nu=0$ as the GMHD system with zero velocity and zero magnetic diffusion respectively (so called ideal MHD equations). The author in [1] studied the global existence of a weak solution when $\alpha \geq \frac{1}{2}+\frac{n}{4}, \alpha+\beta \geq 1+\frac{n}{2}, n \in \mathbb{R}^{3}$. In [2], the author showed that the GMHD

[^0]equations exists a unique global smooth solution when $\alpha, \beta \geq \frac{1}{2}+\frac{n}{4}$, There are some results $[3-8]$ about the existence of the strong solution.

We want to improve the lower bound on the power of the fractional Laplacian in the dissipative term of the generalized Navier-Stokes equations seems extremely difficult, the author introduced the notion of "logarithmic supercriticality" in [9,10], and also proved the global regularity of the solution. the author improved that the results [2] by using the notion of "logarithmic supercriticality" in [11], it were improved that the solution is globally regular in $[12,13]$.

Tran, Yu and Zhai [14] proved that the solutions are globally regular in the following conditions:

$$
(1) \alpha \geq \frac{1}{2}, \beta \geq 1 ; \quad(2) 0 \leq \alpha \leq \frac{1}{2}, 2 \alpha+\beta>2 ; \quad(3) \alpha \geq 2, \beta=0
$$

it were improved that the solution is globally regular of the GMHD equations in [15-19], and there are some results [20-22] about logarithmic type.

Now we focus on our study. The authors in [16] got a global regular solution under the assumption that $0 \leq \alpha<\frac{1}{2}, \beta \geq 1,3 \alpha+2 \beta>3$. In this paper, the dissipation term $-\nu \Lambda^{2 \beta} b$ has been replaced by general negative-definite operator $-\nu \mathcal{L}^{2 \beta} b$ by using the definition in [23], and in the proof, we will use the condition in [24] on g such that there exists an absolute constant $c \geq 0$ satisfying

$$
g^{2}(\tau) \leq c \ln (e+\tau)
$$

Theorem 1.1. Let $0<\alpha<\frac{1}{2}, \beta>1,3 \alpha+2 \beta>3$, Suppose $u_{0}, b_{0} \in H^{s}$ with $s \geq 2$ and divu $u_{0}=$ divb $_{0}=0$ in \mathbb{R}^{2}. Then the problem (1.1)-(1.4) exists the solution (u, b) satisfying

$$
\begin{equation*}
u, b \in L^{\infty}\left(0, T ; H^{s}\right), u \in L^{2}\left(0, T ; H^{s+\alpha}\right), b \in L^{2}\left(0, T ; H^{s+\beta^{\prime}}\right) \tag{1.5}
\end{equation*}
$$

for any $T>0$ and $\beta>\beta^{\prime}>1$.
Remark 1.1. When $\alpha+\beta>2, s>2$, the author in [14] prove the global regularity.

2. Preliminaries

In this section, we will review some known facts and elementary inequalities that will be used frequently later.
Lemma 2.1. (ϵ-Young inequality) If a and b are nonnegative real numbers and p and q are real numbers greater than 1 such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
a b \leq \frac{\epsilon a^{p}}{p}+\epsilon^{-\frac{q}{p}} \frac{b^{q}}{q}
$$

the equality holds if and only if $a^{p}=b^{q}$.
Lemma 2.2. (Gagliardo-Nirenberg inequality [25, 26]) Let u belong to L^{q} and its derivatives of order $m, \Lambda^{m} u$, belong to $L^{r}, 1 \leq q, r \leq \infty$. For the derivatives $\Lambda^{j} u, 0 \leq j<m$, the following inequalities hold

$$
\begin{equation*}
\left\|\Lambda^{j} u\right\|_{L^{p}} \leq C\left\|\Lambda^{m} u\right\|_{L^{r}}^{\alpha}\|u\|_{L^{q}}^{1-\alpha} \tag{2.1}
\end{equation*}
$$

[^0]: ${ }^{\dagger}$ the corresponding author.
 Email address: mcheng@zjnu.edu.cn(M. Cheng)
 ${ }^{1}$ Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

