
Journal of Nonlinear Modeling and Analysis http://jnma.ca; http://jnma.ijournal.cn
Volume 2, Number 4, December 2020, 525–540 DOI:10.12150/jnma.2020.525

Oscillation of Second Order Impulsive Differential
Equations with Nonpositive Neutral Coefficients∗
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Abstract In this work, sufficient conditions are established for a class of
nonlinear second order neutral impulsive differential equations to have oscil-
latory solutions with nonpositive neutral coefficient. Our results extend and
complement some of the known results in the literature. Examples are given
to illustrate our results.
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1. Introduction
Consider the class of second order impulsive nonlinear neutral differential equations
of the form:

(E)


[x(t) + p(t)x(t− τ)]′′ + g(t, x(t), x(t− σ)) = 0, t ̸= θk, t ≥ t0, (1.1)
x(θ+k ) = Ik(x(θk)), k ∈ N, (1.2)
x′(θ+k ) = Jk(x

′(θk)), k ∈ N, (1.3)

where τ, σ ∈ N, 0 ≤ t0 < θ1 < · · · < θk < · · · with limk→∞ θk = ∞ and θk+1 − θk >
ρ = max{τ, σ}. Throughout our work, we assume that the following hypotheses
hold:

(A1) g ∈ C([t0 − ρ,∞) × R × R,R), ug(t, u, v) > 0 for uv > 0, g(t,u,v)
h(v) ≥ q(t) for

v ̸= 0, where q(t) ∈ C([t0−ρ,∞),R+) and q(t) ̸≡ 0 on all interval of the form
(θk, θk+1], k ≥ 1, xh(x) > 0 for all x ̸= 0 and h′(x) ≥ ε > 0;

(A2) Ik, Jk ∈ C(R,R), Ik(0) = 0 = Jk(0) and there exist positive numbers ck, c∗k,
dk, d∗k, such that c∗k ≤ Ik(u)

u ≤ ck, d∗k ≤ Jk(u)
u ≤ dk, k ∈ N;

(A3) p ∈ PC(R+,R) and p(t), p′(t) are left continuous on (θk, θk+1], k ≥ 1 such
that p(θ+k ) = dkp(θk), p′(θ+k ) = dkp

′(θk).

In the literature (see for e.g. [11]), the impulse operators are often treated as
under control, that is, one may expect that either the impulse act as a control and
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cease the oscillation of the system, or operate to keep the system oscillating. In par-
ticular, impulse can make oscillating systems become nonoscillating and conversely
by the imposition of suitable impulse control (see for e.g. [5]- [9], [13]- [17], [23], [27]).

One of the important application of second order differential equations with
impulse is in impact theory. Billiard-type systems, models describing viscoelastic
bodies colliding, systems with delay and impulse are more appropriate to apply
(see for e.g. [10]). Of course, some extra conditions are required while we study
impulsive equations (see for e.g. [2, 3, 21, 22, 26, 28]) to that of nonimpulsive equa-
tions. Furthermore, it is more challenging to study nonlinear neutral equations
as we find a class of second order delay differential equations as special cases. In
this respect, by using comparison technique, the second order impulsive neutral
differential equations

(E∗)


[r(t)(v(t) + p(t)v(t− τ))′]′ + q(t)v(t− σ) = 0, t ̸= θk, t ≥ t0,

v(θ+k ) = (1 + dk)v(θk), k ∈ N,
v′(θ+k ) = (1 + dk)v

′(θk), k ∈ N,

has been studied by Li et al. [13], where τ, σ ∈ N, q(t) > 0, r(t) > 0, bk > −1
and p(t) = p ≥ 0; they have extended and generalised the work of [6] to impulse
equations.

By using the Riccati transfomation technique, Bonotto et al. [4] have considered
the second order neutral differential equations with impulse of the form:

(E∗)


[r(t)(v(t) + p(t)v(t− τ))′]′ + f(t, v(t), v(t− σ)) = 0, t ̸= θk, t ≥ t0,

v(θk) = Ik(v(θ
−
k )), k ∈ N,

v′(θk) = Jk(v
′(θ−k )), k ∈ N,

where τ, σ ∈ N, p ∈ PC([t0,∞),R+), r(t) > 0, θk+1 − θk > σ = max{τ, σ} and
c∗k ≤ Ik(u)

u ≤ ck, Jk(u) = dku, k ∈ N, c∗k, ck, dk > 0 and f(t, v(t), v(t − σ)) ≥
q(t)f(x(t − σ)), and f(x) = x . In this work, the authors have extended and
generalised the work of [12] to impulsive equations in the range 0 ≤ p(t) < 1.

However, it seems that there is no known results regarding the oscillation of
second order impulsive neutral differential equations when the neutral coefficient
p(t) ≤ 0. More exactly, the existing literature does not provide any criteria which
ensure oscillation of all solutions of (E) when p(t) ≤ 0. In view of this motiva-
tion, our aim in this paper is to present sufficient conditions which ensure that all
solutions of (E) are oscillatory.

Definition 1.1. A real valued continuous function x(t) is said to be a solution of
(E) satisfying the initial condition, if the following conditions are satisfied

1. x(t) = ψ(t) for t0 − ρ ≤ t ≤ t0, x(t) ∈ C2[t0,∞,R) and t ̸= θk, k ∈ N;
2. y(t) = x(t) + p(t)x(t − τ) ∈ C1([t0,∞),R) and y′(t) ∈ C1([t0,∞),R), t ̸=
θk, t ̸= θk + τ, t ̸= θk + σ, k ∈ N and satisfies (1.1);

3. x(θ+k ), x(θ
−
k ), x

′(θ+k ) and x′(θ−k ) exist, x(θ−k ) = x(θk), x′(θ−k ) = x′(θk) and
satisfies (1.2) and (1.3) respectively.

Definition 1.2. A nontrivial solution x(t) of (E) is said to be nonoscillatory, if
there exists a point t0 ≥ 0 such that x(t) has a constant sign for t ≥ t0. Otherwise,
the solution x(t) is said to be oscillatory. (E) is oscillatory, if all its solutions are
oscillatory.


	Introduction

