Eigenvalues of Fourth-order Singular Sturm-Liouville Boundary Value Problems*

Lina Zhou ${ }^{1, \dagger}$, Weihua Jiang ${ }^{2}$ and Qiaoluan Li^{1}

Abstract

In this paper, by using Krasnoselskii's fixed-point theorem, some sufficient conditions of existence of positive solutions for the following fourthorder nonlinear Sturm-Liouville eigenvalue problem: $$
\left\{\begin{array}{l} \frac{1}{p(t)}\left(p(t) u^{\prime \prime \prime}\right)^{\prime}(t)+\lambda f(t, u)=0, t \in(0,1) \\ u(0)=u(1)=0 \\ \alpha u^{\prime \prime}(0)-\beta \lim _{t \rightarrow 0^{+}} p(t) u^{\prime \prime \prime}(t)=0 \\ \gamma u^{\prime \prime}(1)+\delta \lim _{t \rightarrow 1^{-}} p(t) u^{\prime \prime \prime}(t)=0 \end{array}\right.
$$

are established, where $\alpha, \beta, \gamma, \delta \geq 0$, and $\beta \gamma+\alpha \gamma+\alpha \delta>0$. The function p may be singular at $t=0$ or 1 , and f satisfies Carathéodory condition.

Keywords Sturm-Liouville problems, Eigenvalue, Krasnoselskii's fixed-point theorem.
MSC(2010) 34B15, 34B25.

1. Introduction

In this paper, we will study the existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville eigenvalue problem:

$$
\left\{\begin{array}{l}
\frac{1}{p(t)}\left(p(t) u^{\prime \prime \prime}\right)^{\prime}(t)+\lambda f(t, u)=0, \quad t \in(0,1) \tag{1.1}\\
u(0)=u(1)=0 \\
\alpha u^{\prime \prime}(0)-\beta \lim _{t \rightarrow 0^{+}} p(t) u^{\prime \prime \prime}(t)=0 \\
\gamma u^{\prime \prime}(1)+\delta \lim _{t \rightarrow 1^{-}} p(t) u^{\prime \prime \prime}(t)=0
\end{array}\right.
$$

where $\lambda>0$ is a parameter, $\alpha, \beta, \gamma, \delta \geq 0$ are some constants satisfying $\beta \gamma+\alpha \gamma+$ $\alpha \delta>0, p \in C^{1}((0,1),(0,+\infty))$ satisfying $\int_{0}^{1} \frac{d s}{p(s)}<+\infty$, and $f:[0,1] \times R^{+} \rightarrow R^{+}$ satisfies Carathéodory condition. From the above conditions, the function p may be singular at $t=0$ or 1 .

[^0]Sturm-Liouville boundary problems have been widely investigated in various fields, such as mathematics, physics and meteorology. In recent decades, a vast amount of research was done on the existence of positive solutions of Sturm-Liouville boundary value problems. Within this development, they paid attention to the theory of eigenvalues and eigenfunctions of Sturm-Liouville problems [2-18]. In particular, many authors were interested in the nonlinear singular Sturm-Liouville problems [10-16]. In [10], Yao et al. proved that the BVP (1.1) has one or two positive solutions for some λ under the assumptions $f_{0}=f_{\infty}=0$ or $f_{0}=f_{\infty}=\infty$. In [13], by a new comparison theorem, Zhang et al. proved that the $\operatorname{BVP}(1.1)$ has at least a positive solution for large enough λ under the assumptions:
(1) $p \in C^{1}((0,1),(0,+\infty))$ and $\int_{0}^{1} \frac{d s}{p(s)}<+\infty$;
(2) $f(t, u) \in C((0,1) \times(0,+\infty),[0,+\infty))$ is decreasing in u;
(3) For any $\mu>0, f(t, \mu) \neq 0$ and $0<\int_{0}^{1} k(s) p(s) f(s, \mu s(1-s)) d s<+\infty$;
(4) For any $u \in[0,+\infty), \lim _{\mu \rightarrow+\infty} \mu f(t, \mu u)=+\infty$ uniformly on $t \in(0,1)$.

In this paper, we consider the existence of positive solutions of the $\operatorname{BVP}(1.1)$, under the following conditions:
$\left(H_{1}\right) p \in C^{1}((0,1),(0,+\infty))$ and $\int_{0}^{1} \frac{d s}{p(s)}<+\infty$;
$\left(H_{2}\right) f:[0,1] \times R^{+} \rightarrow R^{+}$satisfies Carathéodory condition, that is $f(\cdot, u)$ is measurable for each fixed $u \in R^{+}$, and $f(t, \cdot)$ is continuous for a.e. $t \in[0,1]$;
$\left(H_{3}\right)$ for any $r>0$, there exists $h_{r}(t) \in L^{1}[0,1]$, such that $f(t, u) \leq h_{r}(t)$, a.e. $t \in[0,1]$, where $u \in[0, r]$, and $0<\int_{0}^{1} k(s) p(s) h_{r}(s)<+\infty$.

By Krasnoselskii's fixed-point theorem, two main results are obtained under $\left(H_{1}\right)-\left(H_{3}\right)$.

2. Preliminaries

In this section, we present some necessary definitions, theorems and lemmas.
Definition 2.1. A function u is called a solution of the $\operatorname{BVP}(1.1)$ if $u \in C^{3}([0,1]$, $[0,+\infty))$ satisfies $p(t) u^{\prime \prime \prime}(t) \in C^{1}([0,1],[0,+\infty))$ and the $\operatorname{BVP}(1.1)$. Also, u is called a positive solution if $u(t)>0$ for $t \in[0,1]$ and u is a solution of the BVP (1.1). For some λ, if the BVP (1.1) has a positive solution u, then λ is called an eigenvalue and u is called a corresponding eigenfunction of the BVP (1.1).

Theorem 2.1. ([1], [19]) Let X be a real normal linear space, and let $P \subset X$ be a cone in X. Assume Ω_{1}, Ω_{2} are relatively open subsets of X with $0 \in \Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{2}$, and let $T: \bar{\Omega}_{2} \rightarrow P$ be a completely continuous operator such that, either
(1) $\|T u\| \leq r_{1}, u \in \partial \Omega_{1} ; \quad\|T u\| \geq r_{2}, u \in \partial \Omega_{2}$ or
(2) $\|T u\| \geq r_{1}, u \in \partial \Omega_{1} ; \quad\|T u\| \leq r_{2}, u \in \partial \Omega_{2}$.

Then T has a fixed point in $P \bigcap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
In this paper, we always make the following assumption:
$\left(H_{1}\right) p \in C^{1}((0,1),(0,+\infty))$ and $\int_{0}^{1} \frac{d s}{p(s)}<+\infty$.
Now we denote by $H(t, s)$ and $G(t, s)$, respectively, the Green's functions for the following boundary value problems:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=0,0<t<1 \\
u(0)=u(1)=0
\end{array}\right.
$$

[^0]: \dagger the corresponding author.
 Email address: lnazhou@163.com(L. Zhou)
 ${ }^{1}$ School of Mathematical Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
 ${ }^{2}$ College of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
 *The authors were supported by the Natural Science Foundation of China (11971145, 11775169), the Natural Science Foundation of Hebei Province (A2019205133, A2018208171).

