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Threshold Dynamics of an Epidemic Model with
Latency and Vaccination in a Heterogeneous

Habitat∗
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Abstract In this paper, we derive and analyze a nonlocal and time-delayed
reaction-diffusion epidemic model with vaccination strategy in a heterogeneous
habitat. First, we study the well-posedness of the solutions and prove the ex-
istence of a global attractor for the model by applying some existing abstract
results in dynamical systems theory. Then we show the global threshold dy-
namics which predicts whether the disease will die out or persist in terms of
the basic reproduction number R0 defined by the spectral radius of the next
generation operator. Finally, we present the influences of heterogeneous spa-
tial infections, diffusion coefficients and vaccination rate on the spread of the
disease by numerical simulations.
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1. Introduction

Since Gumel and Moghadas [6] proposed an epidemic model with nonlinear inci-
dence and vaccination strategy, researchers have done a lot of work on this model
and its derived versions (see, e.g., [24]). In these models, the role of vaccination
is only to reduce the chance of vaccinated individuals being infected and not fully
immunize, which is different from most existing models that follow the assumption
that vaccinated individuals will not be infected at all (see, e.g., [30]).

In real world, the nature of disease varies with temperature, humidity and oth-
er factors in different environments. The spatial heterogeneity plays an important
role in the theory of epidemiology. So far, many mathematical models with spa-
tial dependence have been studied (see, e.g., [13, 29]). On the other hand, many
diseases have a latent period before the hosts becoming infectious. For instance,
dengue fever is a viral disease, which is transmitted to humans by the Aedes aegypti
mosquito feeding during the day. When an infectious mosquito bites a susceptible
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human, the virus is injected into his or her bloodstream and begins an latent period
which takes from three to seven days [4]. Suppose that the latency τ is brought into
this population, namely, the susceptible or vaccinated individuals will infect other
uninfected individuals after being infected τ time, resulting in dividing the popu-
lation into five epidemiological classes living in the spatial habitat Ω with smooth
boundary ∂Ω: susceptible, vaccinated, exposed, infectious and recovered classes,
denoted by S = S(x, t), V = V (x, t), E = E(x, t), I = I(x, t) and R = R(x, t),
respectively.

Note that if an individual is infected by the disease in one location, and can
move freely during the latent period, this individual may appear at any location in
the domain when this individual becomes infectious. This means that the mobility
of the individuals in the latent period will lead to non-local infection. Some non-
local reaction-diffusion models in a spatially continuous habitat have been widely
studied (see, e.g., [12,23,25,28]). To incorporate non-local infection into the model
properly, we introduce an infection age variable θ, and let u(x, t, θ) represents the
density of infected population with infection age θ at time t and location x ∈ Ω.
Using the standard method on describing age structured population with spatial
diffusion [17], we have

∂u(x, t, θ)

∂t
+
∂u(x, t, θ)

∂θ
= D(x, θ)∆u(x, t, θ)− µ(x)u(x, t, θ)− γ(x, θ)u(x, t, θ),

(1.1)

where D(x, θ) and γ(x, θ) are the diffusion rate and the recovery rate at location x
and age θ, respectively, and µ(x) denotes the natural death rate which is indepen-
dent of the infection age. It easily follows that

E(x, t) =

∫ τ

0

u(x, t, θ)dθ and I(x, t) =

∫ ∞

τ

u(x, t, θ)dθ.

From the biological considerations, infected individuals connot recover during the
latent period. To make the model mathematically tractable yet without losing the
main features, we assume that

D(x, θ) =

{
DE(x) for x ∈ Ω, θ ∈ [0, τ),

DI(x) for x ∈ Ω, θ ∈ [τ,∞),

γ(x, θ) =

{
0 for x ∈ Ω, θ ∈ [0, τ),

γ(x) for x ∈ Ω, θ ∈ [τ,∞).

Integrating both sides of (1.1) with respect to θ from 0 to τ , and from τ to ∞,
respectively, we obtain that

∂E(x, t)

∂t
= DE(x)∆E(x, t)− µ(x)E(x, t) + u(x, t, 0)− u(x, t, τ) (1.2)

and

∂I(x, t)

∂t
= DI(x)∆I(x, t)− (µ(x) + γ(x))I(x, t) + u(x, t, τ)− u(x, t,∞). (1.3)

Biologically, it can be assumed that u(x, t,∞) = 0 (see e.g., [7]). Let β1(x) and
β2(x) be the transmission coefficients of susceptible and vaccinated individuals at


	Introduction

