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1. Introduction

In many branches of science, economics, computer science, engineering and the de-
velopment of nonlinear analysis, the fixed point theory is one of the most important
tool. In 1989, Backhtin [4] introduced the concept of b-metric space. In 1993,
Czerwik [6] extended the results of b-metric spaces. Altun, Sola and Simsek [1]
introduced generalized contractions on partial metric spaces. Rao, Kishore, Tas,
Satyanaraya and Prasad [10] introduced common coupled fixed point results in or-
dered partial metric spaces. Azam, Fisher and Khan [3] introduced new spaces
called complex valued metric spaces and established the existence of fixed point
theorems under the contraction condition. Dhivya and Marudai [7] introduced new
spaces called complex partial metric space and established the existence of com-
mon fixed point theorems under the contraction condition of rational expression.
Bhaskar and Lakshmikantham [8] introduced the concept of coupled fixed point.
Cíŕic and Lakshmikantham [5] investigated some more coupled fixed point theo-
rems in partially ordered sets. Aydi [2] introduced coupled fixed point results on
partial metric spaces. Gunaseelan and Mishra [9] introduced coupled fixed point
theorems on complex partial metric space using different type of contractive con-
ditions. In this paper, we introduced generalized coupled fixed point results on
complex partial metric spaces under the contractive condition.
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2. Preliminaries

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order � on C
as follows:
z1 � z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).
Consequently,one can infer that z1 � z2 if one of the following conditions is satisfied:
(i) Re(z1) = Re(z2),Im(z1) < Im(z2),
(ii)Re(z1) < Re(z2),Im(z1) = Im(z2),
(iii)Re(z1) < Re(z2),Im(z1) < Im(z2),
(iv)Re(z1) = Re(z2),Im(z1) = Im(z2).
In particular, we write z1 � z2 if z1 6= z2 and one of (i), (ii) and (iii) is satisfied and
we write z1 ≺ z2 if only (iii) is satisfied. Notice that
(a) If 0 � z1 � z2, then |z1| < |z2|,
(b) If z1 � z2 and z2 ≺ z3 then z1 ≺ z3,
(c) If a, b ∈ R and a ≤ b then az � bz for all z ∈ C.

Definition 2.1. [7] A complex partial metric on a non-empty set Y is a function
σc : Y × Y → C+ such that for all p, r, s ∈ Y :
(i) 0 � σc(p, p) � σc(p, r)(small self-distances)
(ii) σc(p, r) = σc(r, p)(symmetry)
(iii) σc(p, p) = σc(p, r) = σc(r, r)⇔ p = r(equality)
(iv) σc(p, r) � σc(p, s) + σc(s, r)− σc(s, s)(triangularity).
A complex partial metric space is a pair (Y, σc) such that Y is a non empty set and
σc is complex partial metric on Y .

For the complex partial metric σc on Y , the function dσc
: Y × Y → C+ given

by σtc = 2σc(p, r)−σc(p, p)−σc(r, r) is a (usual) metric on Y . Each complex partial
metric σc on Y generates a topology τσc on Y with the base family of open σc-balls
{Bσc(p, ε) : p ∈ Y, ε > 0}, where Bσc(p, ε) = {r ∈ Y : σc(p, r) < σc(p, p) + ε} for all
p ∈ Y and 0 < ε ∈ C+.

Definition 2.2. [7] Let (Y, σc) be a complex partial metric space(CPMS). A se-
quence (pn) in a CPMS (Y, σc) is convergent to p ∈ Y , if for every 0 ≺ ε ∈ C+ there
is N ∈ N such that for all n ∈ N we get pn ∈ Bσc

(p, ε)

Definition 2.3. [7] Let (Y, σc) be a complex partial metric space. A sequence (pn)
in a CPMS (Y, σc) is called Cauchy if there is a ∈ C+ such that for every ε ≺ 0
there is N ∈ N such that for all n,m ≥ N ; |σc(pn, pm)− a| < ε.

Definition 2.4. [7] Let (Y, σc) be a complex partial metric space(CPMS).
(1) A CPMS (Y, σc) is said to be complete if a Cauchy sequence (pn) in Y converges,
with respect to τσc , to a point p ∈ Y such that σc(p, p) = lim

n,m→∞
σc(pn, pm).

(2) A mapping H : Y → Y is said to be continuous at p0 ∈ Y if for every ε ≺ 0,
there exists δ > 0 such that H(Bσc

(p0, δ)) ⊂ Bσc
(H(p0, ε)).

Lemma 2.1. [7] Let (Y, σc) be a complex partial metric space. A sequence {yn}
is Cauchy sequence in the CPMS (Y, σc) then {yn} is Cauchy in a metric space
(Y, σtc).

Definition 2.5. Let (Y, σc) be a complex partial metric space(CPMS).Then an
element (p, r) ∈ Y × Y is said to be a coupled fixed point of the mapping F :
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