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Abstract. The existence of an infinite sequence of sign-changing solutions are proved
for a class of quasilinear elliptic equations under suitable conditions on the quasilinear
coefficients and the nonlinearity

N

∑
i,j=1

(
bij(u)Diju +

1
2

Dzbij(u)DiuDju
)
+ f (u) = 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary, and we use

Diu =
∂u
∂xi

, Diju =
∂2u

∂xi∂xj
, and Dzbij(z) =

d
dz

bij(z).

The main interest of this paper is for the case of bounded quasilinearity bij. The result
is proved by an elliptic regularization method involving truncations of both u and the
gradient of u.
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1 Introduction

In this paper, we study the existence of sign-changing solutions for the following quasi-
linear elliptic equation

N

∑
i,j=1

(
bij(u)Diju +

1
2

Dzbij(u)DiuDju
)
+ f (u) = 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, and we use the notations

Diu =
∂u
∂xi

, Diju =
∂2u

∂xi∂xj
, Dzbij(z) =

d
dz

bij(z).

We assume the following conditions on bij and f . Denote the critical exponent by 2∗ =
2N

N−2 for N ≥ 3 and 2∗ = +∞ for N = 1, 2.

(b1) Let bij = bji ∈ C1,1(R, R) for i, j = 1, · · · , N, satisfy that there exist positive con-
stants b−, b+ such that

b−|ξ|2 ≤
N

∑
i,j=1

bij(z)ξiξ j ≤ b+|ξ|2 for z ∈ R, ξ = (ξi) ∈ RN .

(b2) There exist constants q > 2, δ > 0 such that

δ|ξ|2 ≤
N

∑
i,j=1

(
bij(z) +

1
2

zDzbij(z)
)

ξiξ j

≤ q
2

( N

∑
i,j=1

bij(z)ξiξ j − δ|ξ|2
)

for z ∈ R, ξ ∈ RN .

(b3) There exists a positive constant c such that

|Dzbij(z)− Dzbij(w)| ≤ c|z− w| for z, w ∈ R.

(b4) bij(z) is even in z.

( f1) Let f ∈ C(R, R) satisfy that there exist constants c > 0 and r ∈ (2, 2∗) such that

| f (z)| ≤ c(1 + |z|r−1) for z ∈ R.


