DOI: 10.4208/ata.2021.pr80.02 June 2021

Multiple Sign-Changing Solutions for Quasilinear Equations of Bounded Quasilinearity

Jiaquan Liu¹, Xiangqing Liu^{2,*} and Zhi-Qiang Wang^{3,4}

¹ LMAM, School of Mathematical Science, Peking University, Beijing 100871, China

² Department of Mathematics, Yunnan Normal University, Kunming, Yunnan 650500, China

³ College of Mathematics and Informatics and Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University, Fuzhou, Fujian 350117, China

⁴ Department of Mathematics and Statistics, Utah State University, Logan, UT 84322. USA

Received 22 July 2020; Accepted (in revised version) 30 November 2020

Dedicated to Prof. Paul H. Rabinowitz with admiration on the occasion of his 80th birthday

Abstract. The existence of an infinite sequence of sign-changing solutions are proved for a class of quasilinear elliptic equations under suitable conditions on the quasilinear coefficients and the nonlinearity

$$\begin{cases} \sum_{i,j=1}^{N} \left(b_{ij}(u)D_{ij}u + \frac{1}{2}D_{z}b_{ij}(u)D_{i}uD_{j}u \right) + f(u) = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary, and we use

$$D_i u = \frac{\partial u}{\partial x_i}$$
, $D_{ij} u = \frac{\partial^2 u}{\partial x_i \partial x_j}$, and $D_z b_{ij}(z) = \frac{d}{dz} b_{ij}(z)$.

The main interest of this paper is for the case of bounded quasilinearity b_{ij} . The result is proved by an elliptic regularization method involving truncations of both u and the gradient of u.

Key Words: Quasilinear elliptic equations, sign-changing solution, an elliptic regularization method.

AMS Subject Classifications: 35J60, 35J20

http://www.global-sci.org/ata/

©2021 Global-Science Press

^{*}Corresponding author. *Email addresses:* jiaquan@math.pku.edu.cn (J. Q. Liu), lxq8u8@163.com (X. Q. Liu), zhi-qiang.wang@usu.edu (Q. Z. Wang)

1 Introduction

In this paper, we study the existence of sign-changing solutions for the following quasilinear elliptic equation

$$\begin{cases} \sum_{i,j=1}^{N} \left(b_{ij}(u)D_{ij}u + \frac{1}{2}D_{z}b_{ij}(u)D_{i}uD_{j}u \right) + f(u) = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary, and we use the notations

$$D_i u = \frac{\partial u}{\partial x_i}, \quad D_{ij} u = \frac{\partial^2 u}{\partial x_i \partial x_j}, \quad D_z b_{ij}(z) = \frac{d}{dz} b_{ij}(z).$$

We assume the following conditions on b_{ij} and f. Denote the critical exponent by $2^* = \frac{2N}{N-2}$ for $N \ge 3$ and $2^* = +\infty$ for N = 1, 2.

 (b_1) Let $b_{ij} = b_{ji} \in C^{1,1}(\mathbb{R},\mathbb{R})$ for $i, j = 1, \dots, N$, satisfy that there exist positive constants b_-, b_+ such that

$$b_-|\xi|^2 \leq \sum_{i,j=1}^N b_{ij}(z)\xi_i\xi_j \leq b_+|\xi|^2 \quad ext{for} \ \ z\in\mathbb{R}, \quad \xi=(\xi_i)\in\mathbb{R}^N.$$

(*b*₂) There exist constants q > 2, $\delta > 0$ such that

$$egin{aligned} \delta|\xi|^2 &\leq \sum\limits_{i,j=1}^N \left(b_{ij}(z) + rac{1}{2} z D_z b_{ij}(z)
ight) \xi_i \xi_j \ &\leq &rac{q}{2} \Big(\sum\limits_{i,j=1}^N b_{ij}(z) \xi_i \xi_j - \delta |\xi|^2 \Big) & ext{for } z \in \mathbb{R}, \quad \xi \in \mathbb{R}^N. \end{aligned}$$

 (b_3) There exists a positive constant *c* such that

$$|D_z b_{ij}(z) - D_z b_{ij}(w)| \le c|z - w|$$
 for $z, w \in \mathbb{R}$.

 $(b_4) \ b_{ij}(z)$ is even in *z*.

(f_1) Let $f \in C(\mathbb{R}, \mathbb{R})$ satisfy that there exist constants c > 0 and $r \in (2, 2^*)$ such that

$$|f(z)| \leq c(1+|z|^{r-1})$$
 for $z \in \mathbb{R}$.