On Integrable Conditions of Generalized Almost Complex Structures

Yin Yan-bin¹ and Liu $Ling^2$

School of Mathematics and Statistics, Henan University, Kaifeng, Henan, 475004)
School of Applied Science, Beijing Information Science and Technology University,

Beijing, 100192)

Communicated by Rong Xiao-chun

Abstract: Generalized complex geometry is a new kind of geometrical structure which contains complex and symplectic geometry as its special cases. This paper gives the equivalence between the integrable conditions of a generalized almost complex structure in big bracket formalism and those in the general framework.

Key words: generalized almost complex geometry, big bracket, supermanifold2010 MR subject classification: 53D17, 17B63

Document code: A

Article ID: 1674-5647(2016)02-0111-06 DOI: 10.13447/j.1674-5647.2016.02.03

1 Introduction

Generalized geometry was created by Hitchin^[1] originally as a way of characterizing special geometry in low dimensions, and has been further developed by Hitchin's students.

In [2], the integrable conditions under which a generalized almost complex structure becomes a generalized complex structure have been given in general way. The same question is discussed by using the big bracket formulism in supermanifold geometry by Kosmann-Schwarzbach and Rubtsov^[3].

In this paper, we firstly recall some basic notions and facts about generalized complex structures, and then we devote to proving the equivalence between the integrable conditions of a generalized almost complex structure in different formalism.

Received date: Sept. 7, 2014.

Foundation item: The Excellent Talent Program (2012D005007000005) of Beijing.

E-mail address: yyb@henu.edu.cn (Yin Y B).

2 Integrable Conditions of Generalized Almost Complex Structures

Assume that M is a real manifold with dimension 2n and set $\mathbb{T}M = TM \oplus T^*M$. A generalized almost complex is an endomorphism $\mathcal{N} : \mathbb{T}M \longrightarrow \mathbb{T}M$ such that

(1) \mathcal{N} is symplectic, i.e., $\langle \mathcal{N}e_1, e_2 \rangle + \langle e_1, \mathcal{N}e_2 \rangle = 0$ for $e_1, e_2 \in \Gamma(\mathbb{T}M)$;

(2) \mathcal{N} is complex, i.e., $\mathcal{N}^2 = -\mathrm{Id}$,

where $\langle \cdot, \cdot \rangle$ denotes the natural pairing given by $\langle X + \xi, Y + \eta \rangle = \eta(X) + \xi(Y)$ for $X + \xi, Y + \eta \in \Gamma(\mathbb{T}M)$.

Any generalized almost complex structure \mathcal{N} may be presented by classical tensor fields as follows:

$$\mathcal{N} = \left(\begin{array}{cc} N & \pi^{\sharp} \\ \sigma^{\sharp} & -N^* \end{array}\right),$$

where $\pi \in \Gamma(\wedge^2 TM)$, $\sigma \in \Omega^2(M)$, and N is a (1, 1)-tensor field over M, $\pi^{\sharp} : T^*M \longrightarrow TM$ denotes a linear map defined by $\pi^{\sharp}(\xi) = i_{\xi}\pi = \pi(\xi, \cdot)$ for $\xi \in \Omega^1(M)$. Similarly, σ^{\sharp} is a linear map defined by $\sigma^{\sharp}(X) = i_X \sigma$ for $X \in \Gamma(TM)$, N^* is the dual map of N. Clearly, \mathcal{N} is symplectic if \mathcal{N} is of the above form.

For any $e = X + \xi \in \Gamma(\mathbb{T}M)$, we have

$$\mathcal{N}e = \begin{pmatrix} N & \pi^{\sharp} \\ \sigma^{\sharp} & -N^{*} \end{pmatrix} \begin{pmatrix} X \\ \xi \end{pmatrix} = N(X) + \pi^{\sharp}(\xi) + \sigma^{\sharp}(X) - N^{*}\xi$$

This structure is described by the big bracket formulism in [3]. The big bracket, denoted by $\{\cdot, \cdot\}$, is an even graded bracket on the space \mathcal{O} of functions on the cotangent bundle ΠT^*M , which is a supermanifold given by TM, more details are found in [4]–[5]. The action of \mathcal{N} on $e \in \Gamma(\mathbb{T}M)$ can be expressed as

$$\{e, \ \mathcal{N}\} \triangleq \{e, \ N + \pi + \sigma\} \\ = \{X + \xi, \ N + \pi + \sigma\} \\ = \{X, N\} + \{X, \ \sigma\} + \{\xi, \ N\} + \{\xi, \ \pi\} \\ = N(X) + \sigma^{\sharp}(X) - N^{*}\xi + \pi^{\sharp}(\xi),$$

that is, $\mathcal{N}e = \{e, \mathcal{N}\}$ for any $e \in \Gamma(\mathbb{T}M)$.

In this paper, we sometimes abbreviate $\mathcal{N} = \begin{pmatrix} N & \pi^{\sharp} \\ \sigma^{\sharp} & -N^{*} \end{pmatrix}$ to $\mathcal{N} = N + \pi + \sigma$ and omit the composition operation sign "o" when expressing the composition of two operators. For example, we write $\sigma^{\sharp}\pi^{\sharp}$ for $\sigma^{\sharp} \circ \pi^{\sharp}$. We adopt the convention in [3], $\pi^{\sharp}(\xi) = \{\xi, \pi\}$ and $\sigma^{\sharp}(X) = \{X, \sigma\}$.

By definition of the generalized almost complex structure, the endomorphism $\mathcal{N} = N + \pi + \sigma$ of $\mathbb{T}M$ is a generalized almost complex structure if and only if the following equalities hold:

(a) $N^2 + \pi^{\sharp} \sigma^{\sharp} = -\text{Id};$ (b) $N\pi^{\sharp} = \pi^{\sharp} N^*;$ (c) $\sigma^{\sharp} N = N^* \sigma^{\sharp}.$