
Communications
in
Mathematical
Research
32(2)(2016), 105–110

Several Hermite-Hadamard Type Inequalities

for Harmonically Convex Functions in the

Second Sense with Applications

Wang Wen1,2, Yang Shi-guo1 and Liu Xue-ying1

(1. School of Mathematics and Statistics, Hefei Normal University, Hefei, 230601)

(2. School of Mathematical Science, University of Science and Technology of China,

Hefei, 230026)

Communicated by Wang De-hui

Abstract: In this paper, we first introduce the concept “harmonically convex func-

tions” in the second sense and establish several Hermite-Hadamard type inequalities

for harmonically convex functions in the second sense. Finally, some applications to

special mean are shown.

Key words: Hermite-Hadamard’s inequality, harmonically convex function, mean,

inequality

2010 MR subject classification: 26D15, 26A51

Document code: A

Article ID: 1674-5647(2016)02-0105-06

DOI: 10.13447/j.1674-5647.2016.02.02

1 Introduction

Throughout this paper, we let R = (−∞,+∞), R++ = (0,+∞). We first recall some

definitions of various convex functions.

Definition 1.1 [1]–[2] A function f : I ⊂ R → R is said to be a convex function on I if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), x, y ∈ I, t ∈ [0, 1];

f is a concave function if −f is a convex function.

Definition 1.2 [3]–[4] A function f : I ⊂ R\{0} → R is said to be a harmonically convex

function on I if

f
( 1

tx−1 + (1− t)y−1

)
≤ tf(x) + (1− t)f(y), x, y ∈ I, t ∈ [0, 1];
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f is said to be a harmonically concave function if −f is a harmonically convex function.

Definition 1.3 [5] A function f : I ⊂ R++ → R++ is said to be an m-AH convex function

on I if

f(tx+m(1− t)y) ≤ 1

t[f(x)]−1 +m(1− t)[f(y)]−1
, x, y ∈ I, t ∈ [0, 1];

f is said to be an m-AH concave function if −f is an m-AH convex function.

Let f : I ⊂ R → R be a convex function. The following inequality is the well-known

Hadamard’s inequality

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
, a, b ∈ I with a < b.

We now recall some integral inequalities of Hermite-Hadamard type for some special

functions.

Theorem 1.1 [3]–[4] Let f : I ⊂ R\{0} → R be a harmonically convex function, and

a, b ∈ I with a < b. If f ∈ L[a, b], then

f
( 2ab

a+ b

)
≤ ab

b− a

∫ b

a

f(x)

x2
dx ≤ f(a) + f(b)

2
.

For many recent results related to Hermite-Hadamard type inequalities, see [6]–[22].

The aim of this paper is first to introduce the concept “harmonically convex function” in

the second sense and establish some Hermite-Hadamard type inequalities for harmonically

convex functions in the second sense. Finally, some applications to special mean are shown.

2 Definition and Lemma

The concept of harmonically convex function in the second sense can be introduced as

follows.

Definition 2.1 [20] A function f : I ⊂ R\{0} → R\{0} is said to be a harmonically

convex function in the second sense on I if

f
( 1

tx−1 + (1− t)y−1

)
≤ 1

t[f(x)]−1 + (1− t)[f(y)]−1
, x, y ∈ I, t ∈ [0, 1]; (2.1)

f is said to be a harmonically concave function in the second sense if −f is a harmonically

convex function in the second sense.

Lemma 2.1 Let f(x) = xr (x ∈ R++). If r ≤ 0 or r ≥ 1, then f(x) = xr is a harmon-

ically concave function in the second sense; If 0 < r < 1, then f(x) = xr is a harmonically

convex function in the second sense.

Proof. According to the properties of the function f(x) = xr (x ∈ R++), the following

results is valid:

(1) For r ≤ 0 or r ≥ 1, f(x) = xr is a convex function;


