Normality Criteria of Meromorphic Functions Concerning Shared Analytic Function

YANG QI

(School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)

Communicated by Ji You-qing

Abstract: In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.

Key words: meromorphic function, entire function, shared function, normal family 2010 MR subject classification: 30D35, 30D45

Document code: A

Article ID: 1674-5647(2016)01-0047-10 DOI: 10.13447/j.1674-5647.2016.01.03

1 Introduction and Main Results

Let D be a domain in \mathbb{C} , and \mathcal{F} be a family of meromorphic functions defined in the domain D. \mathcal{F} is said to be normal in D if any sequence $\{f_n\} \subset \mathcal{F}$ contains a subsequence f_{n_j} , which converges spherically locally uniformly in D to a meromorphic function or ∞ (see [1]–[5]).

Let f(z) be a mermorphic function in a domain D and $z_0 \in D$. If $f(z_0) = z_0$, we say that z_0 is the fixed-point of f(z). Let f(z) and g(z) denote two meromorphic functions in D. If $f(z) - \psi(z)$ and $g(z) - \psi(z)$ have the same zeros (or ignoring multiplicity), then we say that f(z) and g(z) share $\psi(z)$ CM (or IM).

In 1998, Wang and Fang^[6] proved the following result:

Theorem 1.1 Let k and $n \ge k+1$ be two positive integers, and f be a transcendental merimorphic function. Then $(f^n)^{(k)}$ assumes every finite nonzero value infinitely often.

Corresponding to Theorem 1.1, there are the following theorems about normal families.

Theorem 1.2^[7] Let k and $n \ge k+3$ be two positive integers and \mathcal{F} be a family of meromorphic functions defined in a domain D. If $(f^n)^{(k)} \ne 1$ for every function $f \in \mathcal{F}$, then \mathcal{F} is normal in D.

Received date: May 27, 2014.

Foundation item: The NSF (11461070) of China.

E-mail address: yangqi_8138@126.com (Yang Q).

In 2009, Li and $Gu^{[8]}$ proved:

Theorem 1.3 Let \mathcal{F} be a family of meromorphic functions defined in a domain D. Let $k, n \geq k+2$ be positive integers and $a \neq 0$ be a finite complex number. For each pair $(f,g) \in \mathcal{F}$, if $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share a in D, then \mathcal{F} is normal in D.

Lately, many authors studied the functions of the form $f(f^{(k)})^n$. Hu and Meng^[9] proved:

Theorem 1.4 Take positive integers n and k with $n, k \ge 2$, and take a non-zero complex number a. Let \mathcal{F} be a family of meromorphic functions in the plane domain D such that each $f \in \mathcal{F}$ has all its zeros of multiplicity at least k. For each pair $(f, g) \in \mathcal{F}$, if $f(f^{(k)})^n$ and $g(g^{(k)})^n$ share a IM, then \mathcal{F} is normal in D.

Recently, Jiang and Gao^[10] extended Theorem 1.4 as follows:

Theorem 1.5 Let $m \ge 0$, $n \ge 2m + 2$ and $k \ge 2$ be three positive integers and m be divisible by n+1. Suppose that $a(z) (\not\equiv 0)$ is a holomorphic function with zeros of multiplicity m in a domain D. Let \mathcal{F} be a family of meromorphic functions in a domain D, and for each $f \in \mathcal{F}$, f has all its zeros of multiplicity $\max\{k + m, 2m + 2\}$ at least. For each pair $(f, g) \in \mathcal{F}$, if $f(f^{(k)})^n$ and $g(g^{(k)})^n$ share a(z) IM, then \mathcal{F} is normal in D.

A natural question is: What can be said if the function $f(f^{(k)})^n$ in Theorem 1.5 is replaced by the function $f^d(f^{(k)})^n$? In this paper, we answer this question by proving the following theorem:

Theorem 1.6 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, and $m \geq 0, n \geq 2m + 2, k \geq 2, d \geq 1, p \geq 1$ be five integers and m be divisible by n + d. Let $\psi(z) \neq 0$ be an analytic function with zeros of multiplicity m in a domain D. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least $p \geq \max\left\{k + \frac{m}{d}, 2m + 2\right\}$. For each pair $(f, g) \in \mathcal{F}$, if $f^d(f^{(k)})^n$ and $g^d(g^{(k)})^n$ share $\psi(z)$ IM, then \mathcal{F} is normal in D.

Remark 1.1 Obviously, from Theorem 1.6, we can get Theorem 1.5 when d = 1.

2 Some Lemmas

In order to prove Theorem 1.6, we require the following results.

Lemma 2.1^[11] Let \mathcal{F} be a family of meromorphic functions on the unit disc satisfying all zeros of functions in \mathcal{F} have multiplicity $\geq p$ and all poles of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-q < \alpha < p$. Then \mathcal{F} is not normal at 0 if and only if there exist

- a) a number 0 < r < 1;
- b) points z_n with $|z_n| < r$;