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A COMPACT FINITE DIFFERENCE SCHEME FOR THE
FOURTH-ORDER TIME MULTI-TERM FRACTIONAL
SUB-DIFFUSION EQUATIONS WITH THE FIRST
DIRICHLET BOUNDARY CONDITIONS
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Abstract. In this paper, a finite difference scheme is established for solving the fourth-order time
multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions. Using
the method of order reduction, the original problem is equivalent to a lower-order system. Then
the system is considered at some particular points, and the first Dirichlet boundary conditions
are also specially handled, so that the global convergence of the presented difference scheme
reaches O(72 + h%), with 7 and h the temporal and spatial step size, respectively. The energy
method is used to give the theoretical analysis on the stability and convergence of the difference
scheme, where some novel techniques have been applied due to the non-local property of fractional
operators and the numerical treatment of the first Dirichlet boundary conditions. Numerical
experiments further validate the theoretical results.
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1. Introduction

With the development of science and technology, fractional differential equations
are widely used in scientific research and engineering applications. Many phenom-
ena in the fields of astronomy [1], finance [2], medicine [3], physics [4], etc. can
use fractional differential equations to build models. Therefore, the theoretical re-
searches and applications of fractional differential equations have become one of
the hot issues of recent concern, which has the widespread good prospects for de-
velopment. Since the solutions to many fractional differential equations cannot
be accurately obtained or the form of the solution is relatively complicated, the
numerical results are particularly important.

When the first-order or second-order time derivatives in the classical diffusion
wave equation are replaced by fractional derivatives, the fractional diffusion wave
equations are obtained. In recent years, many scholars have done a lot of re-
searches on the second-order time fractional diffusion equations. Sun and Wu [5]
analyzed the truncation errors of the L1 numerical approximation formula by us-
ing linear interpolation for the Caputo fractional derivative and then constructed
a fully discrete difference scheme for the fractional wave equations by introducing
new variables to convert the original system of equations into a lower-order system.
The stability and convergence of the difference scheme were proved by the energy
method. Based on the previous content, the numerical results in the case of the slow
diffusion system were also briefly discussed. Du, Cao and Sun [6] further proposed
the high order difference method for the fractional wave equations to improve the
convergence order in space to the fourth-order. Gao and Sun [7] proposed a com-
pact difference scheme for time fractional diffusion equations, where the stability
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and unconditional convergence of the scheme were shown by defining a new inner
product. By selecting 0 = 1 — §, Alikhanov [8] obtained the L2 — 1, formula to
approximate the values of Caputo derivatives at some particular points and proved
that the truncation error of this formula is O(737%), with a the order of the frac-
tional derivative. Based on this formula, the finite difference scheme for the time
fractional diffusion equation was established with the convergence accuracy of order
two in both time and space. Vong and Lyu [9] proposed a finite difference scheme
for a time-fractional Burgers-type equation, where the highlight of the scheme was
that there is no need to use iterative methods to find the approximate solutions,
and the unconditional stability together with convergence were proved.

For some physical phenomena, it is often not enough to describe these phenom-
ena by the second-order spatial derivative term, hence the fourth-order derivative
term in space need be introduced. By using the finite sine transform technique,
Agrawal [10] converted a fractional differential equation from a space domain to a
wave number domain and obtained the solutions to fourth-order fractional diffusion-
wave equations by the method of inverse Laplace and inverse finite sine transforms.
Hu and Zhang [11] applied the extrapolation technique to establish a compact dif-
ference scheme for solving the fourth-order fractional diffusion wave equations, and
in Ref. [12], using the method of order reduction, an implicit compact difference
scheme for the fourth-order fractional diffusion-wave equations was obtained. Wei
and He [13] introduced a fully discrete local discontinuous Galerkin finite element
method based on a finite difference discretization in time and local discontinuous
Galerkin method in space for fourth-order time fractional equations and proved its
unconditional stability and convergence. Yao and Wang [14] established a finite dif-
ference scheme with global convergence order O(72 + h?) for fourth-order fractional
diffusion equations with Neumann boundary conditions by the special handling of
the Neumann boundary condition. Liu et al. [15] proposed a finite element algo-
rithm for solving nonlinear time fractional diffusion equations with the fourth-order
derivative term.

The fractional diffusion wave equation plays an important role in the field of
anomalous diffusion, especially the case with the time multi-term fractional deriva-
tives. It’s often called the multi-term fractional diffusion-wave equation. Jiang et
al. [16] used the method of separation of variables to present the analytical solu-
tions to the multi-term time-fractional diffusion-wave equation and the multi-term
time-fractional diffusion equation. Liu et al. [17] investigated two implicit numer-
ical methods to simulate the two-term mobile/immobile time fractional diffusion
equation and the two-term time fractional diffusion equation, where the predictor-
corrector method to solve the multi-term time fractional diffusion equations was
proposed and the strict theoretical analysis was provided. Ren and Sun [18] ob-
tained the difference scheme for solving one-dimensional and two-dimensional multi-
term time fractional diffusion-wave equations by using the L1 approximation for the
multi-term time Caputo fractional derivatives. Gao, Alikhanov and Sun [19] con-
sidered the interpolation approximation of the multi-term fractional derivatives at
some special points and established a numerical algorithm for solving time multi-
term fractional diffusion equations. Wei [20] established a fully discrete scheme
using local discontinuous Galerkin method in space and classical L1 approximation
in time and proved the stability and convergence of the resultant scheme. By ex-
tending the domain of the fractional Laplacian to a Banach space and using the
multivariate Mittag-Leffler function, Sin, Ri and Kim [21] obtained the analytical
solutions to the multi-term fractional diffusion equation. Reutskiy [22] introduced



