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Abstract. Conjugate gradient methods are interesting iterative methods that solve

large scale unconstrained optimization problems. A lot of recent research has thus
focussed on developing a number of conjugate gradient methods that are more effec-

tive. In this paper, we propose another hybrid conjugate gradient method as a linear
combination of Dai-Yuan (DY) method and the Hestenes-Stiefel (HS) method. The

sufficient descent condition and the global convergence of this method are estab-

lished using the generalized Wolfe line search conditions. Compared to the other
conjugate gradient methods, the proposed method gives good numerical results and

is effective.
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1. Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn −→ R is a continuously differentiable function that is bounded below.

There are several numerical methods for solving the unconstrained optimization prob-

lem (1.1). These include conjugate gradient methods [1, 6, 9, 11, 19], Newton meth-

ods [18, 39], quasi-Newton methods [8, 12, 33, 37, 42, 43] and steepest descent meth-

ods [7,22,26,49]. These methods are iterative, that is, given an initial guess x0 ∈ R
n,

they generate a sequence {xk} using
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xk+1 = xk + αkdk, (1.2)

where αk > 0 is a step length and dk is a descent direction. They also differ according

to how the search direction dk is obtained or updated. Newton and quasi-Newton

methods require the second derivative information for updating the direction dk and

hence have good convergence rate. Conjugate gradient and steepest descent methods

only require the first derivative information, which makes them more applicable to

solving large-scale optimization problems.

The step length αk > 0 is chosen to satisfy certain line search conditions. Two of

the usually used line searches are the strong Wolfe conditions
{

f(xk + αkdk) ≤ f(xk) + σαkg
T
k dk,

∣

∣g(xk + αkdk)
T dk

∣

∣ ≤ σ1
∣

∣gTk dk
∣

∣ ,
(1.3)

and the weak Wolfe conditions
{

f(xk + αkdk) ≤ f(xk) + σαkg
T
k dk,

g(xk + αkdk)
Tdk ≥ σ1g

T
k dk,

(1.4)

where 0 < σ < σ1 < 1.
In this paper, we consider solving problem (1.1) using a conjugate gradient method.

Conjugate gradient methods generate the next iterate xk+1 by updating the direction

dk as

dk =

{

−gk, k = 0,

−gk + βkdk−1, k ≥ 1,
(1.5)

where gk = ∇f(xk) is the gradient of the function f at xk, and βk ∈ R is a parameter

known as the conjugate gradient coefficient. Different choices of βk lead to different

conjugate gradient methods, with the most well known methods being the Fletcher-

Reeves (FR) [17], Polak-Ribière-Polyak (PRP) [36, 38], conjugate descent (CD) [16],

Dai-Yuan (DY) [10], Liu-Storey (LS) [29] and Hestenes-Stiefel (HS) [21]. The PRP, LS

and HS conjugate gradient methods have been shown to be numerically efficient while

the others are theoretically effective. Other conjugate gradient methods have also been

suggested in the literature [5,13,24,28,30,34,35,47] and a number of them are either

modifications or hybridizations of the above methods. For instance, Wei et al. [44]

proposed a conjugate gradient method

βWYL
k =

gTk
(

gk −
‖gk‖

‖gk−1‖
gk−1

)

‖gk−1‖2
, (1.6)

which is a modification of the PRP method. It is globally convergent under weak Wolfe

line search and numerically better than the PRP method. Similarly, Yao et al. [46]

extended the above modification to HS method, that is,

βV HS
k =

gTk
(

gk −
‖gk‖

‖gk−1‖
gk−1

)

dTk−1
yk−1

, (1.7)


