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Abstract. The main interests here are to study the relationship between card(X) and
card(P(X)) and the connection between the separability of a space X and cardinality
of some function space on it. We will convert the calculation of card(P(X)) to the
calculation of card(F(X → Q)). The main tool we used here is Zorn Lemma.
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1 Introduction

Let X be a set. If X is a finite set, we call the number of elements of X the cardinality
of X, and denote it by card(X). For two infinite sets X and Y, we can use this notion to
compare the ”number” of two sets X and Y. The following expressions are well-known:

(i) card(X) ≤ card(Y) if there exists an injective map φ : X → Y;

(ii) card(X) ≥ card(Y) if there exists a surjective map φ : X → Y;

(iii) card(X) = card(Y) if there exists a bijective map φ : X → Y.

Let X and Y be two sets. We recall the following theorems in [1–3].

Theorem 1.1. card(X) = card(Y) if and only if card(X) ≤ card(Y) and card(X) ≥ card(Y)
both hold.

Theorem 1.2. Either card(X) < card(Y) or card(Y) < card(X) or card(X) = card(Y).

Theorem 1.3. card(X) < card(P(X)).
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In this paper, we use N, Z, Q, R and C to denote the set of positive integers, integers,
rational numbers, real numbers and complex numbers respectively. The number filed F
mentioned here is a subfield of C, thus Q is the minimal number field and F ⊃ Q. Given
two sets X and Y, we denote

F(X → Y) = {map f : X → Y}. (1.1)

Especially, there is a natural algebra structure on F(X → F) if F is a field. As usual,
we use (X, ρ) to denote a metric space with a metric map ρ : X × X → [0,+∞), which
satisfies

(i) ρ(x1, x2) = 0 if and only if x1 = x2;

(ii) ρ(x1, x2) = ρ(x2, x1);

(iii) ρ(x1, x3) ≤ ρ(x1, x2) + ρ(x2, x3), where x1, x2, x3 are arbitrary points of X.

We use (X,M, µ) to denote a measure space, where M is a σ-algebra on X, and µ is a
measure, i.e., µ : M→ [0,+∞] is a map, satisfying

(i) µ(φ) = 0;

(ii) µ(∪∞
j=1Ej) = ∑+∞

j=1 µ(Ej), where Ej ∈M and Ej1 ∩ Ej2 = ∅, (j1 6= j2).

We denote card(N) = c0, which is the minimal cardinality of all infinite sets. Denote
card(R) = c, which is called ”cardinality of the continuum”.

Let X and Y be two sets and α = card(X), β = card(Y). We have the following
definitions,

Definition 1.1. If X ∩Y = ∅, we define α + β = card(X ∪Y).

Definition 1.2. Define α · β = card(X×Y).

Definition 1.3. Define βα = card(F(X → Y)).

We verify that these three definitions are well-defined. Suppose two sets X1 and Y1
satisfy card(X1) = card(X), card(Y1) = card(Y) and X1 ∩ Y1 = ∅ (in Definition 1.1).
Then, we have bijective maps φ : X → X1 and ψ : Y → Y1. We construct three maps ω, θ,
η as follows:

ω : X ∪Y → X1 ∪Y1, ω(z) =
{

φ(x), if z = x ∈ X,
ψ(y), if z = y ∈ Y,

(1.2a)

θ : X×Y → X1 ×Y1 : θ(x, y) = (φ(x), ψ(y)), (1.2b)

where x ∈ X, y ∈ Y.

η : F(X → Y)→ F(X1 → Y1) : η( f ) = ψ ◦ f ◦ φ−1, (1.3)

where f ∈ F(X → Y), “◦” represents the composition of maps. It is easy to verify that
ω, θ, η are bijective. Thus these definitions are well-defined.


