Analysis in Theory and Applications Anal. Theory Appl., Vol. **36**, No. 4 (2020), pp. 468-481

A Note on Card(X)

Weituo Dai, Meng Wang* and Limin Sun

School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China

Received 17 September 2020; Accepted (in revised version) 21 September 2020

Dedicated to Professor Weiyi Su on the occasion of her 80th birthday

Abstract. The main interests here are to study the relationship between card(X) and $card(\mathcal{P}(X))$ and the connection between the separability of a space X and cardinality of some function space on it. We will convert the calculation of $card(\mathcal{P}(X))$ to the calculation of $card(\mathcal{P}(X \to \mathbb{Q}))$. The main tool we used here is Zorn Lemma.

Key Words: Cardinality, separability of space, Zorn Lemma.

AMS Subject Classifications: 03E10

1 Introduction

Let *X* be a set. If *X* is a finite set, we call the number of elements of *X* the cardinality of *X*, and denote it by card(X). For two infinite sets *X* and *Y*, we can use this notion to compare the "number" of two sets *X* and *Y*. The following expressions are well-known:

- (i) $card(X) \leq card(Y)$ if there exists an injective map $\phi : X \to Y$;
- (ii) $card(X) \ge card(Y)$ if there exists a surjective map $\phi : X \to Y$;
- (iii) card(X) = card(Y) if there exists a bijective map $\phi : X \to Y$.

Let *X* and *Y* be two sets. We recall the following theorems in [1–3].

Theorem 1.1. card(X) = card(Y) if and only if $card(X) \le card(Y)$ and $card(X) \ge card(Y)$ both hold.

Theorem 1.2. *Either* card(X) < card(Y) *or* card(Y) < card(X) *or* card(X) = card(Y).

Theorem 1.3. $card(X) < card(\mathcal{P}(X))$.

http://www.global-sci.org/ata/

468

©2020 Global-Science Press

^{*}Corresponding author. *Email address:* mathdreamcn@zju.edu.cn (M. Wang)

In this paper, we use \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} to denote the set of positive integers, integers, rational numbers, real numbers and complex numbers respectively. The number filed *F* mentioned here is a subfield of \mathbb{C} , thus \mathbb{Q} is the minimal number field and $F \supset \mathbb{Q}$. Given two sets *X* and *Y*, we denote

$$\mathfrak{F}(X \to Y) = \{ \operatorname{map} f : X \to Y \}.$$
(1.1)

Especially, there is a natural algebra structure on $\mathcal{F}(X \to F)$ if *F* is a field. As usual, we use (X, ρ) to denote a metric space with a metric map $\rho : X \times X \to [0, +\infty)$, which satisfies

- (i) $\rho(x_1, x_2) = 0$ if and only if $x_1 = x_2$;
- (ii) $\rho(x_1, x_2) = \rho(x_2, x_1);$
- (iii) $\rho(x_1, x_3) \le \rho(x_1, x_2) + \rho(x_2, x_3)$, where x_1, x_2, x_3 are arbitrary points of *X*.

We use (X, \mathcal{M}, μ) to denote a measure space, where \mathcal{M} is a σ -algebra on X, and μ is a measure, i.e., $\mu : \mathcal{M} \to [0, +\infty]$ is a map, satisfying

- (i) $\mu(\phi) = 0;$
- (ii) $\mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{+\infty} \mu(E_j)$, where $E_j \in \mathcal{M}$ and $E_{j_1} \cap E_{j_2} = \emptyset$, $(j_1 \neq j_2)$.

We denote $card(\mathbb{N}) = c_0$, which is the minimal cardinality of all infinite sets. Denote $card(\mathbb{R}) = c$, which is called "cardinality of the continuum".

Let *X* and *Y* be two sets and $\alpha = card(X)$, $\beta = card(Y)$. We have the following definitions,

Definition 1.1. If $X \cap Y = \emptyset$, we define $\alpha + \beta = card(X \cup Y)$.

Definition 1.2. Define $\alpha \cdot \beta = card(X \times Y)$.

Definition 1.3. Define $\beta^{\alpha} = card(\mathcal{F}(X \to Y))$.

We verify that these three definitions are well-defined. Suppose two sets X_1 and Y_1 satisfy $card(X_1) = card(X)$, $card(Y_1) = card(Y)$ and $X_1 \cap Y_1 = \emptyset$ (in Definition 1.1). Then, we have bijective maps $\phi : X \to X_1$ and $\psi : Y \to Y_1$. We construct three maps ω , θ , η as follows:

$$\omega: X \cup Y \to X_1 \cup Y_1, \quad \omega(z) = \begin{cases} \phi(x), & \text{if } z = x \in X, \\ \psi(y), & \text{if } z = y \in Y, \end{cases}$$
(1.2a)

$$\theta: X \times Y \to X_1 \times Y_1: \ \theta(x, y) = (\phi(x), \psi(y)), \tag{1.2b}$$

where $x \in X$, $y \in Y$.

$$\eta: \mathfrak{F}(X \to Y) \to \mathfrak{F}(X_1 \to Y_1): \ \eta(f) = \psi \circ f \circ \phi^{-1}, \tag{1.3}$$

where $f \in \mathcal{F}(X \to Y)$, " \circ " represents the composition of maps. It is easy to verify that ω, θ, η are bijective. Thus these definitions are well-defined.