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Abstract. Let A be a general expansive matrix on Rn. The aims of this article are
twofold. The first one is to give a survey on the recent developments of anisotropic
Hardy-type function spaces on Rn, including anisotropic Hardy–Lorentz spaces,
anisotropic variable Hardy spaces and anisotropic variable Hardy–Lorentz spaces as
well as anisotropic Musielak–Orlicz Hardy spaces. The second one is to correct some
errors and seal some gaps existing in the known articles. Some unsolved problems are
also presented.
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1 Introduction

In order to meet the requirements arising in the development of harmonic analysis and
partial differential equations, there has been more and more research in extending clas-
sical function spaces from Euclidean spaces to some more general underlying spaces;
see, for instance, [8, 34, 44, 47, 49, 58, 85, 90, 116]. In 2003, to give a unified framework
of the real-variable theory of both the isotropic Hardy space and the parabolic Hardy
space of Calderón and Torchinsky [19], for the first time, Bownik [12] introduced the
anisotropic Hardy space Hp

A(R
n) with p ∈ (0, ∞), where A is a general expansive matrix

on Rn (see [12, p. 5, Definition 2.1]). In [12], Bownik also established the characterizations
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of Hp
A(R

n), respectively, in terms of atoms, maximal functions and tight frame multi-
wavelets (see [12, p. 94, Definition 4.2]), and proved as well that the dual space of Hp

A(R
n)

with p ∈ (0, 1] is the anisotropic Campanato space; as applications, Bownik [12] also ob-
tained the boundedness of anisotropic Calderón–Zygmund operators from Hp

A(R
n) to

itself (or to the Lebesgue space Lp(Rn)). Later on, Bownik et al. [16] further extended the
anisotropic Hardy space to the weighted setting. Very recently, Wang [110] considered
a multiplier theorem on anisotropic Hardy spaces Hp

A(R
n). Nowadays, the anisotropic

setting has proved useful not only in developing function spaces, but also in many other
branches such as the wavelet theory (see, for instance, [5, 12, 25]) and partial differential
equations (see, for instance, [18, 53]).

Let us briefly recall some history of the study of anisotropic function spaces. It has
been developed parallel to the theory for isotropic spaces; we refer the reader in partic-
ular to the monographs [9, 88] (and the articles mentioned there), and to the survey [10].
For any p ∈ (1, ∞) and {si}n

i=1 ⊂ N, the (classical) anisotropic Sobolev space on Rn

contains all f ∈ Lp(Rn) such that

∂si f
∂xsi

i
∈ Lp(Rn) for any i ∈ {1, · · · , n}.

It is obvious that, unlike in case of the isotropic Sobolev space (namely, the case when
s1 = · · · = sn), the smoothness properties of an element depend on the chosen direction
in Rn. The number s, defined by setting 1

s := 1
n (

1
s1
+ · · ·+ 1

sn
), is usually called the mean

smoothness, and a = (a1, · · · , an), given by ai := s
si

, i ∈ {1, · · · , n}, characterizes the
anisotropy. Similarly to the isotropic situation, more general scales of anisotropic Bessel
potential spaces (fractional Sobolev spaces), anisotropic Besov spaces and anisotropic
Triebel–Lizorkin spaces were studied. It is well known that the isotropic theory has a
more or less complete counterpart of the fundamentals (definitions, description via dif-
ferences and derivatives, elementary properties, embeddings for different metrics, in-
terpolation) in the context of anisotropic spaces. A survey on the basic results for the
(anisotropic) spaces of Besov or Triebel–Lizorkin type was given in [94, Subsections 4.2.1
through 4.2.4] (with preceding results in [83, 92, 93, 103–106]) and [57, Sections 2.1 and
2.2]. More recently, several authors were concerned with the problem of obtaining use-
ful decompositions of anisotropic function spaces of Besov and Triebel–Lizorkin type.
A construction of unconditional bases using Meyer wavelets was obtained in [7, 8]; see
also [44, 45, 49]; a different approach, involving the ϕ-transform of Frazier and Jawerth
(see [40, 41]) was followed in [28–30]; see also [95]. More recent contributions can be
found in [13–15] and [55, 61, 62]. Based on the approach used in [107, 108], further repre-
sentations were obtained by local means, atomic and sub-atomic decompositions, which
can be found in [34, 47]; see also [24, 35, 36, 101, 112, 113] for applications. Finally, let us
refer the reader to [109, Chapter 5] where Triebel gave a very nice and detailed sum-
mary of the history, recent developments and the state-of-the-art (in 2006), which we also
recommend for further references. Moreover, Barrios et al. [4] further characterized the
anisotropic Besov spaces in terms of Peetre maximal functions and approximations; Li et


