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Abstract. Let A be a general expansive matrix on R"”. The aims of this article are
twofold. The first one is to give a survey on the recent developments of anisotropic
Hardy-type function spaces on R”, including anisotropic Hardy-Lorentz spaces,
anisotropic variable Hardy spaces and anisotropic variable Hardy-Lorentz spaces as
well as anisotropic Musielak-Orlicz Hardy spaces. The second one is to correct some
errors and seal some gaps existing in the known articles. Some unsolved problems are
also presented.
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1 Introduction

In order to meet the requirements arising in the development of harmonic analysis and
partial differential equations, there has been more and more research in extending clas-
sical function spaces from Euclidean spaces to some more general underlying spaces;
see, for instance, [8, 34, 44, 47,49, 58, 85,90, 116]. In 2003, to give a unified framework
of the real-variable theory of both the isotropic Hardy space and the parabolic Hardy
space of Calderén and Torchinsky [19], for the first time, Bownik [12] introduced the
anisotropic Hardy space H Z (R") with p € (0,00), where A is a general expansive matrix
on R” (see [12, p. 5, Definition 2.1]). In [12], Bownik also established the characterizations

*Corresponding author. Email addresses: junliu@cumt.edu.cn (J. Liu), dorothee.haroske@uni-jena.de
(D. D. Haroske), dcyang@bnu. edu. cn (D. Yang)

http:/ /www.global-sci.org/ata/ 373 (©2020 Global-Science Press



374 J. Liu, D. D. Haroske and D. Yang / Anal. Theory Appl., 36 (2020), pp. 373-456

of H Z(]R”), respectively, in terms of atoms, maximal functions and tight frame multi-
wavelets (see [12, p. 94, Definition 4.2]), and proved as well that the dual space of HZ (R™)
with p € (0, 1] is the anisotropic Campanato space; as applications, Bownik [12] also ob-
tained the boundedness of anisotropic Calderén-Zygmund operators from H/ (R") to
itself (or to the Lebesgue space LP(R")). Later on, Bownik et al. [16] further extended the
anisotropic Hardy space to the weighted setting. Very recently, Wang [110] considered
a multiplier theorem on anisotropic Hardy spaces H (R"). Nowadays, the anisotropic
setting has proved useful not only in developing function spaces, but also in many other
branches such as the wavelet theory (see, for instance, [5,12,25]) and partial differential
equations (see, for instance, [18,53]).

Let us briefly recall some history of the study of anisotropic function spaces. It has
been developed parallel to the theory for isotropic spaces; we refer the reader in partic-
ular to the monographs [9, 88] (and the articles mentioned there), and to the survey [10].
For any p € (1,00) and {s;}/"; C IN, the (classical) anisotropic Sobolev space on R"
contains all f € L?(IR") such that

& f , .
e € LP(R") forany i€ {1,---,n}.
X

1

It is obvious that, unlike in case of the isotropic Sobolev space (namely, the case when
s = -+ - = 5,), the smoothness properties of an element depend on the chosen direction
in R". The number s, defined by setting 1 := %(% +--- é), is usually called the mean
smoothness, and a = (a1, -- ,a,), given by a; := Sii, i € {1,---,n}, characterizes the
anisotropy. Similarly to the isotropic situation, more general scales of anisotropic Bessel
potential spaces (fractional Sobolev spaces), anisotropic Besov spaces and anisotropic
Triebel-Lizorkin spaces were studied. It is well known that the isotropic theory has a
more or less complete counterpart of the fundamentals (definitions, description via dif-
ferences and derivatives, elementary properties, embeddings for different metrics, in-
terpolation) in the context of anisotropic spaces. A survey on the basic results for the
(anisotropic) spaces of Besov or Triebel-Lizorkin type was given in [94, Subsections 4.2.1
through 4.2.4] (with preceding results in [83,92,93,103-106]) and [57, Sections 2.1 and
2.2]. More recently, several authors were concerned with the problem of obtaining use-
ful decompositions of anisotropic function spaces of Besov and Triebel-Lizorkin type.
A construction of unconditional bases using Meyer wavelets was obtained in [7, 8]; see
also [44, 45,49]; a different approach, involving the ¢-transform of Frazier and Jawerth
(see [40,41]) was followed in [28-30]; see also [95]. More recent contributions can be
found in [13-15] and [55, 61, 62]. Based on the approach used in [107,108], further repre-
sentations were obtained by local means, atomic and sub-atomic decompositions, which
can be found in [34,47]; see also [24,35,36,101,112,113] for applications. Finally, let us
refer the reader to [109, Chapter 5] where Triebel gave a very nice and detailed sum-
mary of the history, recent developments and the state-of-the-art (in 2006), which we also
recommend for further references. Moreover, Barrios et al. [4] further characterized the
anisotropic Besov spaces in terms of Peetre maximal functions and approximations; Li et



