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Abstract

We study a class of deep neural networks with architectures that form a directed acyclic

graph (DAG). For backpropagation defined by gradient descent with adaptive momentum,

we show weights converge for a large class of nonlinear activation functions. The proof

generalizes the results of Wu et al. (2008) who showed convergence for a feed-forward

network with one hidden layer. For an example of the effectiveness of DAG architectures,

we describe an example of compression through an AutoEncoder, and compare against

sequential feed-forward networks under several metrics.
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1. Introduction

Neural networks have recently enjoyed an acceleration in popularity, with new research

adding to several decades of foundational work. From multilayer perceptron (MLP) networks

to the more prominent recurrent neural networks (RNNs) and convolutional neural networks

(CNNs), neural networks have become a dominant force in the fields of computer vision, speech

recognition, and machine translation [11]. Increase in computational speed and data collection

have legitimized the training of increasingly complex deep networks. The flow of information

from input to output is typically performed in a strictly sequential feed-forward fashion, in which

for a network consisting of L layers, nodes in the ith layer receive input from the (i− 1)st layer,

compute an output for each neuron through an activation function, and in turn use this output

as an input for the (i+1)st layer. A natural extension to this network structure is the addition

of “skip connections” between layers. Specifically, we are interested in the class of architectures

in which the network of connections form a directed acyclic graph (DAG). The defining property

of a DAG is that it can always be decomposed into a topological ordering of L layers, in which
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nodes in layer i may be connected to layer j, where j > i. A skip connections is a connection

between nodes in layers i and j, with j > i+1. There has been an increasing interest in studying

networks with skip connections which skip a small number of layers, with examples including

Deep Residual Networks (ResNet) [5], Highway Networks [13], and FractalNets [8]. ResNets, for

instance, use “shortcut connections” in which a copy of previous layers is mapped through an

identity mapping to future layers. Kothari and Agyepong [7] introduced “lateral connections”

in the form of a chain, with each unit in a hidden layer connected to the next. The full generality

of neural networks for DAG architectures was considered in [6], which demonstrated superior

performance of neural networks, entitled DenseNets, under a wide variety of skip-connections.

As an example of the efficacy of DAG architectures considered in [6], we consider AutoEn-

coders, a class of neural networks which provide a means of data compression. For an AutoEn-

coder, input data, such as a pixelated image, is also the desired output for a neural network.

During an encoding phase, input is compressed through several hidden layers before arriving

at a middle hidden layer, called the code, having dimension smaller than the input. The next

phase is decoding, in which input from the code is fed through several more hidden layers until

arriving at the output, which is of the same dimension as the input. The goal of compression

is to minimize the difference between input data and output. In [1], Agarwal et al. introduced

CrossEncoders and demonstrated its superior performance against AutoEncoders with no skip-

connections. In Section 3, we extend the previous results to include the MNIST and Olivetti

faces public datasets. We validate our results against several commonly used compression based

performance metrics.

Our main theoretical result is the convergence of backpropagation with DAG architectures

using gradient descent with momentum. It is well known that feed-forward architectures con-

verge under backpropagation, which is essentially gradient descent applied to an error function

(see [3], for instance). Updates for weights in backpropagation may be generalized to include

a momentum term, which can help with increasing the convergence rate [12]. Momentum can

help with escaping local minima, but concerns of overshooting require careful arguments for

establishing convergence. Formal arguments for convergence have so far been restricted to

simple classes of neural networks. Bhaya [2] and Torii [15] studied the convergence with back-

propagation using momentum under a linear activation function. Zhang et al. [17] generalized

convergence for a class of common nonlinear activation functions, including sigmoids, for the

case of a zero hidden layer networks. Wu et al. [16] further generalized to one layer by demon-

strating that error is monotonically decreasing under backpropagation iterations for sufficiently

small momentum terms. The addition of a hidden layer required [16] to make the additional

assumption of bounded weights during the iteration procedure.

It is not evident whether applying the methods of [16] would generalize to networks with

several hidden layers and skip connections, or if they would require stronger assumptions on

boundedness of weights or the class of activation functions. We show in Section 4 that con-

vergence indeed does hold, with similar assumptions to the proof of convergence of one hidden

layer. In Theorem 4.1, we give the key inequality for proving Theorem 2.1, a recursive form

for increments of error and output values of hidden layers after each iteration. This estimate

allows us to show that for sufficiently small momentum parameters (including the case of zero

momentum), error decreases with each iteration. Our approach to convergence is somewhat

more explicit than the traditional proof of gradient descent, which minimizes a loss function

without considering network architecture.


