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Abstract

In this paper, the superconvergence properties of the time-dependent Navier-Stokes

equations are investigated by a low order nonconforming mixed finite element method

(MFEM). In terms of the integral identity technique, the superclose error estimates for

both the velocity in broken H1-norm and the pressure in L2-norm are first obtained,

which play a key role to bound the numerical solution in L∞-norm. Then the corresponding

global superconvergence results are derived through a suitable interpolation postprocessing

approach. Finally, some numerical results are provided to demonstrated the theoretical

analysis.
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1. Introduction

In this paper, we focus on the following time-dependent Navier-Stokes equations in 2D:

ut − ν∆u+ (u · ∇)u +∇p = f , (x, t) ∈ Ω× (0, T ], (1.1)

∇ · u = 0, (x, t) ∈ Ω× (0, T ], (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (1.3)

u(x, 0) = u0(x), x ∈ Ω, (1.4)

where Ω ⊂ R
2 is a rectangular domain with boundary ∂Ω and x = (x1, x2). u = (u1, u2)

represents the velocity vector, p the pressure, f = (f1, f2) the body force, ν = 1/Re the

viscosity coefficient and Re is the Reynolds number.

It is well known that the incompressible Navier-Stokes equations are of great importance

both in mathematics and fluid mechanics. There have been a large number of works concen-

trated on the numerical solutions of Navier-Stokes equations. We refer the readers to mono-

graphs [1,2] for the theoretical and numerical analysis, [3–6] for finite difference methods, [7–24]

for FEMs, [25–27] for characteristics FEMs, [28, 29] for discontinuous Galerkin method. More
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precisely, ax fast finite difference method was proposed in [4] based on the vorticity stream-

function formulation. A backward Euler fully-discrete penalty FEM was presented in [7] and an

optimal error estimate was provided when the corresponding parameters were sufficiently small.

Through the spatial discretization by finite element approximation and the time discrtization

by the semi-implicit scheme, a fully-discrete stabilized FEM was studied in [8]. In addition,

a stabilized FEM was considered by use of the local polynomial pressure projection with the

lowest equal-order elements in [9]. The two-level finite element Galerkin method was employed

to deduce the corresponding optimal error estimates in [10] and [11], respectively. Moreover,

a class of nonconforming rectangular elements were used in [16] and an optimal estimate was

obtained. Two kinds second order nonconforming mixed FEMs were developed and optimal

error estimates were derived in [22] and [23], respectively. In [27], the unconditional stability

and convergence of characteristics type method was studied and an optimal error estimate was

achieved.

As far as we know, all of the above works are concerned with convergence analysis and

optimal error estimates. Recently, the superconvergnece analysis was researched with non-

conforming mixed FEM (CNRQ1+Q0, see the Section 2 for the definition) for the stationary

Navier-Stokes equations and time-dependent Navier-Stokes equations in [30] and [31], respec-

tively. However, only the error estimate for the spatial semi-discrete scheme was considered

in [31] and the error estimate is not valid when t → 0.

In this paper, we will focus on the superconvergence analysis for (1.1)–(1.4) by a linearized

fully-discrete scheme, in which the spatial discretization approximated by the low order CNRQ1

element (cf. [32, 33]) for the velocity, and the piecewise constant for the pressure and the time

discretization approximated by the semi-implicit Euler scheme. It should be mentioned that the

factor 1/t required in [31] is removed in our present work, which shows that the error estimates

are also valid when t → 0.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the non-

conforming finite element spaces and some lemmas. In Section 3, we discuss the superclose

and superconvergence analysis for (1.1)–(1.4). In the last section, we carry out two numerical

experiments to confirm the theoretical analysis.

2. The Finite Element Spaces and Some Lemmas

We will use the standard notations for the Sobolev space Hm(Ω), m ≥ 0 (cf. [34]) with

their associated norm ‖ · ‖m and seminorm | · |m. In the case m = 0, then H0(Ω) = L2(Ω), the

norm and inner product are denoted by ‖ · ‖0 and (·, ·), respectively. We let L2
0(Ω) denote the

subspace of L2(Ω) such that

L2
0(Ω) =

{

v ∈ L2(Ω) :

∫

Ω

vdx1dx2 = 0

}

.

In addition, for any Banach space X and I = [0, T ], let Lp(I;X) be the space of all measurable

function f : I → X with the norm

‖f‖Lp(I;X) =

{

(
∫ T

0 ‖f‖pXdt)
1

p , 1 ≤ p < ∞,

esssupt∈I‖f‖X, p = ∞.


