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Abstract. In this paper, we focus on the numerical simulation of the two-layer shal-
low water equations over variable bottom topography. Although the existing numeri-
cal schemes for the single-layer shallow water equations can be extended to two-layer
shallow water equations, it is not a trivial work due to the complexity of the equations.
To achieve the well-balanced property of the numerical scheme easily, the two-layer
shallow water equations are reformulated into a new form by introducing two aux-
iliary variables. Since the new equations are only conditionally hyperbolic and their
eigenstructure cannot be easily obtained, we consider the utilization of the central dis-
continuous Galerkin method which is free of Riemann solvers. By choosing the values
of the auxiliary variables suitably, we can prove that the scheme can exactly preserve
the still-water solution, and thus it is a truly well-balanced scheme. To ensure the
non-negativity of the water depth, a positivity-preserving limiter and a special ap-
proximation to the bottom topography are employed. The accuracy and validity of the
numerical method will be illustrated through some numerical tests.
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1 Introduction

The shallow water equations [19, 20] are widely adopted to model free-surface flows
in rivers, channels, flood plains and coastal regions, however, the single-layer shallow
water equations have the drawback of missing some physical dynamics in the verti-
cal motion when studying stratified flow motions. Therefore, during the last decades,
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multi-layer shallow water equations have been attracted more attention and have be-
come an important tool to study stratified flow motions, such as salinity-driven exchange
flow motions [12], wave-mud interactions [17] and chaotic mixing of particles in layered
flows [24].

In this paper, we focus on the numerical simulation of the two-layer shallow water
equations, which are given by
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in one-dimensional (1-D) space, and
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in two-dimensional (2-D) space. Herein, the subscripts 1 and 2 denote the upper and the
lower layer in the system respectively (see Fig. 1). In these equations, ρi is a constant
representing the density of the ith layer with 0 < ρ1 < ρ2, hi denotes the height of the
ith layer, ui,vi are the vertically averaged horizontal velocity of the ith layer in the x-
and y-directions, respectively, i = 1,2, b is the bottom topography and g represents the
gravitational constant.

Similar to single-layer shallow water equations, these equations admit still-water so-
lutions

u1=u2=0, h1+h2+b=constant, h2+b=constant (1.3)

for 1-D case and

u1=u2=v1=v2=0, h1+h2+b=constant, h2+b=constant (1.4)


