
INTERNATIONAL JOURNAL OF c© 2020 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 17, Number 4, Pages 517–531

NUMERICAL INVESTIGATION ON WEAK GALERKIN FINITE

ELEMENTS

JUNPING WANG, XIU YE, AND SHANGYOU ZHANG

Abstract. The weak Galerkin (WG) finite element method is an effective and robust numeri-
cal technique for the approximate solution of partial differential equations. The essence of the
method is the use of weak finite element functions and their weak derivatives computed with a
framework that mimics the distribution or generalized functions. Weak functions and their weak
derivatives can be constructed by using polynomials of arbitrary degrees; each chosen combination
of polynomial subspaces generates a particular set of weak Galerkin finite elements in application
to PDE solving. This article explores the computational performance of various weak Galerkin
finite elements in terms of stability, convergence, and supercloseness when applied to the model
Dirichlet boundary value problem for a second order elliptic equation. The numerical results are
illustrated in 31 tables, which serve two purposes: (1) they provide detailed and specific guidance
on the numerical performance of a large class of WG elements, and (2) the information shown in
the tables may open new research projects for interested researchers as they interpret the results
from their own perspectives.
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1. Introduction

The weak Galerkin (WG) finite element method is an effective and robust nu-
merical technique for the approximate solution of partial differential equations. It
is a natural extension of the standard conforming Galerkin finite element method
by substituting the classical derivatives with weakly defined discrete derivatives for
discontinuous functions. The WG method was first introduced in [17, 18], and since
then, it has been applied/extended to several classes of partial differential equations
such as biharmonic equations, Stokes equations, Navier-Stokes equations, Brinkman
equations, parabolic equations, Helmholtz equation, convection dominant problems,
hyperbolic equations, and Maxwell’s equations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 19].

The main idea of weak Galerkin finite element methods is the use of weak func-
tions and their corresponding weak derivatives. For simplicity, we demonstrate the
idea by using the second order elliptic problem that seeks an unknown function u
satisfying

−∇ · (∇u) = f in Ω,(1)

u = g on ∂Ω,(2)

where Ω is a polygonal domain in R2. The primal weak form for the problem (1)-(2)
seeks u ∈ H1(Ω) such that u = g on ∂Ω and satisfying

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).(3)

For the variational problem (3), the weak functions possess the form of v = {v0, vb}
with v = v0 inside of each element and v = vb on the boundary of the element.
Both v0 and vb can be approximated by polynomials in P`(T ) and Ps(e) respectively,
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where T stands for an element and e the edge of T , ` and s are non-negative integers
with possibly different values. Weak derivatives are defined for weak functions in the
sense of distributions. Denote byGm(T ) the vector space for weak gradient. Typical
choices for Gm(T ) are [Pm(T )]d or the Raviart-Thomas elements RTm(T ). Each
particular combination of (P`(T ), Ps(e), Gm(T )) leads to a class of weak Galerkin
finite element methods tailored for specific partial differential equations.

Weak Galerkin finite element methods have two forms for the problem (1)-(2).
The first one is the standard formulation [11, 17] which seeks uh ∈ Vh such that
uh = Qbg on ∂Ω and satisfying

(∇wuh,∇wv) + s(uh, v) = (f, v) ∀v ∈ V 0
h ,(4)

where s(·, ·) is a parameter independent stabilizer. Another one is the stabilizer-free
formulation [1, 20, 21]: find uh ∈ Vh such that uh = Qbg on ∂Ω and satisfying

(∇wuh,∇wv) = (f, v) ∀v ∈ V 0
h .(5)

Removing the stabilizer from the original WG scheme simplifies the formulation and
reduces the programming complexity arising from the stabilizer, but at the cost of
increasing the computational complexity for the weak derivative. To have desired
stability and convergence, stabilizer-free WG methods must use relatively high val-
ues ofm for approximating weak gradient in the WG element (P`(T ), Ps(e), Gm(T )).

The purpose of this paper is to investigate the performance of different WG
elements computationally in the weak Galerkin finite element methods with or
without stabilizers. The numerical results will be illustrated in 31 tables that
are informative and clearly demonstrate special properties of each WG element.
It should be noted that not all of the numerical phenomena shown in the tables
have theoretical justifications in existing literature; researchers are encouraged to
conduct a theoretical investigation for those of their interests.

Table 3 shows that the WG element (Pk(T ), Pk(e), [Pk+1]
2) has two orders of

supercloseness in both energy and L2 norms on rectangular partitions. Motivated
by this computational result, we will provide a theoretical justification for this su-
perconvergence in a forthcoming paper. We note that it has been proved in [2] that
the WG element (Pk(T ), Pk+1(e), [Pk+1]

2) has two orders of supercloseness in both
energy norm and L2 norm, on general triangular meshes in Table 18. Furthermore,
to overcome the poor performance of the WG element (Pk(T ), Pk−1(e), [Pk+1]

2)
shown in Table 24 and 29, a new weak gradient was introduced in [22] so that the
element can still converge in optimal order on general polytopal meshes.

The WGmethods are designed for discontinuous approximations on general poly-
topal meshes. Due to limited space, this paper shall only consider the finite element
partitions with rectangular and triangular elements.

2. Weak Galerkin Finite Element formulations

Let Th be a partition of the domain Ω consisting of rectangles or triangles. Denote
by Eh the set of all edges in Th, and let E0

h = Eh\∂Ω be the set of all interior edges
or flat faces. For every element T ∈ Th, we denote by hT its diameter and mesh
size h = maxT∈Th

hT for Th. Let Pk(T ) consist all the polynomials defined on T of
degree less or equal to k.

Definition 1. For T ∈ Th and `, s ≥ 0, define a local WG element W`,s(T ) as,

(6) W`,s(T ) = {v = {v0, vb} : v0|T ∈ P`(T ), vb|e ∈ Ps(e), e ⊂ ∂T}.


