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Abstract. Recent years have witnessed growing interests in solving partial dif-
ferential equations by deep neural networks, especially in the high-dimensional
case. Unlike classical numerical methods, such as finite difference method and
finite element method, the enforcement of boundary conditions in deep neu-
ral networks is highly nontrivial. One general strategy is to use the penalty
method. In the work, we conduct a comparison study for elliptic problems with
four different boundary conditions, i.e., Dirichlet, Neumann, Robin, and peri-
odic boundary conditions, using two representative methods: deep Galerkin
method and deep Ritz method. In the former, the PDE residual is minimized
in the least-squares sense while the corresponding variational problem is min-
imized in the latter. Therefore, it is reasonably expected that deep Galerkin
method works better for smooth solutions while deep Ritz method works bet-
ter for low-regularity solutions. However, by a number of examples, we ob-
serve that deep Ritz method can outperform deep Galerkin method with a clear
dependence of dimensionality even for smooth solutions and deep Galerkin
method can also outperform deep Ritz method for low-regularity solutions.
Besides, in some cases, when the boundary condition can be implemented in
an exact manner, we find that such a strategy not only provides a better ap-
proximate solution but also facilitates the training process.
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1 Introduction

In the past decade, deep learning has achieved great success in many subjects, like
computer vision, speech recognition, and natural language processing [7, 11, 18]
due to the strong representability of deep neural networks (DNNs). Meanwhile,
DNNs have also been used to solve partial differential equations (PDEs); see for
example [1, 4, 5, 8, 19, 22, 24, 26, 28]. In classical numerical methods such as finite
difference method [20] and finite element method [2], the number of degrees of
freedoms (dofs) grows exponentially fast as the dimension of PDE increases. One
striking advantage of DNNs over classical numerical methods is that the num-
ber of dofs only grows (at most) polynomially. Therefore, DNNs are particularly
suitable for solving high-dimensional PDEs. The magic underlying this is to ap-
proximate a function using the network representation of independent variables
without using mesh points. Afterwards, Monte-Carlo method is used to approxi-
mate the loss (objective) function which is defined over a high-dimensional space.
Some methods are based on the PDE itself [24, 26] and some other methods are
based on the variational or the weak formulation [5,16,21,28]. Another successful
example is the multilevel Picard approximation which is provable to overcome
the curse of dimensionality for a class of semilinear parabolic equations [13]. In
the current work, we focus on two representative methods: deep Ritz method
(DRM) proposed by E and Yu [5] and deep Galerkin method (DGM) proposed by
Sirignano and Spiliopoulos [26]. It is worth mentioning that the loss function in
DGM is defined as the PDE residual in the least-squares sense. Therefore, DGM is
not a Galerkin method and has no connection with Galerkin from the perspective
of numerical PDEs although it is named after Galerkin.

In classical numerical methods, boundary conditions can be exactly enforced
for mesh points at the boundary. Typically boundary conditions include Dirich-
let, Neumann, Robin, and periodic boundary conditions [6]. However, it is very
difficult to impose exact boundary conditions for a DNN representation. There-
fore, in the loss function, it is often to add a penalty term which penalizes the dif-
ference between the DNN representation on the boundary and the exact bound-
ary condition, typically in the sense of L2 norm. Only when Dirichlet boundary
condition is imposed, a novel construction of two DNN representations can be


