
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 3, No. 3, pp. 370-388

DOI: 10.4208/aamm.10-10s2-07
June 2011

High Level Languages Implementation and
Analysis of 3D Navier-Stokes Solvers

Valerio Grazioso1,∗, Carlo Scalo1, Giuseppe de Felice2

and Carlo Meola2

1 Department of Mechanical and Materials Engineering, Queen’s University,
130 Stuart Street, Kingston, Ontario, Canada
2 Dipartimento di Energetica Termofluidodinamica applicata e Condizionamenti
ambientali (DETEC), Università degli Studi di Napoli ’Federico II’, P.le Tecchio
80, 80125 Naples, Italy

Received 29 January 2010; Accepted (in revised version) 28 October 2010
Available online 28 February 2011

Abstract. In this work we introduce PRIN-3D (PRoto-code for Internal flows mod-
eled by Navier-Stokes equations in 3-Dimensions), a new high level algebraic lan-
guage (Matlab R⃝) based code, by discussing some fundamental aspects regarding
its basic solving kernel and by describing the design of an innovative advection
scheme. The main focus was on designing a memory and computationally efficient
code that, due to the typical conciseness of the Matlab coding language, could al-
low for fast and effective implementation of new models or algorithms. Innovative
numerical methods are discussed in the paper. The pressure equation is derived
with a quasi-segregation technique leading to an iterative scheme obtained within
the framework of a global preconditioning procedure. Different levels of paral-
lelization are obtainable by exploiting special pressure variable ordering patterns
that lead to a block-structured Poisson-like matrix. Moreover, the new advection
scheme has the potential of a controllable artificial diffusivity. Preliminary results
are shown including a fully three-dimensional internal laminar flow evolving in a
relatively complex geometry and a 3D methane-air flame simulated with the aid of
libraries based on the Flamelet model.

AMS subject classifications: 65M10, 78A48, 76M99.
Key words: Matlab, high level algebraical languages, segregation, preconditioning, flamelet.

1 Introduction

The vast majority of present CFD codes have been developed in what would be con-

∗Corresponding author.
URL: http://me.queensu.ca/people/piomelli/research/TSMLab.php
Email: graziosov@me.queensu.ca (V. Grazioso), cscalo.ca@gmail.com (C. Scalo), giudefel@unina.it (G. de
Felice), cmeola@unina.it (C. Meola)

http://www.global-sci.org/aamm 370 c⃝2011 Global Science Press



V. Grazioso, C. Scalo, G. de Felice, and C. Meola / Adv. Appl. Math. Mech., 3 (2011), pp. 370-388 371

sidered nowadays as low-level programming languages like C or Fortran. This allows
for faster performances, and sometimes, for the creation of machine specific highly ef-
ficient executables. On the other hand, high-level or very high-level languages allow
for higher level of abstraction from machine language. Important features include run-
time interpretation and debugging, handling of more generic data structures, sym-
bolic math toolboxes and intermediate code files. The well known drawbacks fall into
the class of the so called abstraction penalties: slower execution speed, higher memory
consumption, larger binary program size [4]. However, as computational resources
get more sophisticated but yet more available and affordable, newly developed high-
level programming languages become faster and easier to use and have the potential
to be considered a valid candidate for code developing.

In order to design a CFD code that would enable the user to perform several tasks
ranging from algebraic analysis of the equations’ structure to modular implementa-
tion of virtually any kind of fluid dynamic model, it is therefore convenient to adopt
high-level algebraic languages (like Python, Scilab, Octave, etc). For our purposes we
considered Matlab R⃝ as being the most appropriate option. This choice was made con-
sidering the opportunities that this kind of programming language offers in terms of
easy user interfacing, fast libraries, packages integration (i.e., NAG, LAPACK, UMF-
PACK, etc) and increasing usage of natively multi-threaded functions (such as the
fftw-based FFT). In comparison with low-level programming languages (like C or For-
tran) many pre-compiled subroutines are available to the user and a very high-level of
abstraction from the details of the computer is possible with, for instance, structures,
cell-arrays and object oriented programming. The most important feature of Matlab
remains its natural and native handling of fundamental linear algebra objects like ma-
trices, and the extensive amount of libraries and functions available for a lot of simple
and complex algebraic operations such as matrix multiplication, inversion or eigen-
values extraction. Moreover, Matlab has been developing parallelization capabilities
(distributed and shared memory) by providing specifically designed toolboxes (MPI
based) and packages (like Star-P R⃝).

The choice of algebraic solving strategies is strongly dependant on the choice of the
Navier-Stokes solver which is determined by the class of fluid dynamic problems one
intends to solve. A first general distinction may be made among fully implicit, semi-
implicit and fully explicit time discretization strategies. For steady laminar flows the
transient evolution from an initial condition is usually not being resolved and large
time-steps are used when possible; this requires methods that penalize time accu-
racy but that are, possibly, unconditionally stable in time allowing to reach steady
state in the least amount of computational time. The best choice in this case would
be SIMPLE-based solving techniques like PISO, SIMPLEC [2] in which both diffusive
and (linearized) convective terms are treated implicitly allowing to remove CFL time
constraints as well as viscous ones. For eddy resolving turbulent flow simulations
the constraints on the time-step are determined by the need to accurately resolve the
time scale of the smallest resolved eddies. The required time step is typically smaller
than what determined by viscous and CFL constraints and, therefore, fully implicit


