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Abstract. In this paper, a generalized nonlinear dissipative and dispersive equation
with time and space-dependent coefficients is considered. We show that the control of
the higher order term is possible by using an adequate weight function to define the
energy. The existence and uniqueness of solutions are obtained via a Picard iterative
method. As an application to this general Theorem, we prove the well-posedness of
the Camassa-Holm type equation.
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1 Introduction

1.1 Presentation of the problem

In this paper, we study the Cauchy problem for the general nonlinear higher order dissi-

pative-dispersive equation:











(1−m∂2
x)ut+a1(t,x,u)ux+a2(t,x,u,ux)uxx+a3(t,x,u)uxxx

+a4(t,x)uxxxx+a5(t,x)uxxxxx= f , for (t,x)∈ (0,T]×R,

u|t=0
=u0,

(1.1)

where u=u(t,x), from [0,T]×R into R, is the unknown function of the problem, m>0, ai,

1≤i≤5 and f are real-valued smooth given functions where their exact regularities will be
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precised later. This equation covers several important unidirectional models for the water

wave problem at different regimes which take into account the variations of the bottom

and the surface tension. We have in view in particular the example of the Camassa-

Holm equation was first derived by Camassa and Holm in [1] (see also [2–4]), which is

more nonlinear then the KdV and BBM equations (see for instance [5–11]). The presence

of the fifth order derivative term is very important, so that the equation describes both

nonlinear and dispersive effects as does the Camassa-Holm equation in the case of special

tension surface values (see [12]).

Looking for solutions of (1.1) plays an important and significant role in the study

of unidirectional limits for water wave problems with variable depth and topographies.

To our knowledge the problem (1.1) has not been analyzed previously. In the present

paper, we prove the local well-posedness of the initial value problem (1.1) by a standard

Picard iterative scheme and the use of adequate energy estimates under a condition of

nondegeneracy of the higher dispersive coefficient a5. Therefore we apply this general

theorem, to prove the well-posedness of the higher order Camassa-Holm-type equation.

1.2 Notations and main result

In the following, C0 denotes any nonnegative constant whose exact expression is of no

importance. The notation a.b means that a≤C0 b.

We denote by C(λ1,λ2,. . .) a nonnegative constant depending on the parameters λ1,

λ2,. . . and whose dependence on the λj is always assumed to be nondecreasing.

For any s∈R, we denote [s] the integer part of s.

Let p be any constant with 1≤ p<∞ and denote Lp=Lp(R) the space of all Lebesgue-

measurable functions f with the standard norm

| f |Lp =

(

∫

R

| f (x)|pdx

)1/p

<∞.

The real inner product of any two functions f1 and f2 in the Hilbert space L2(R) is denot-

ed by

( f1, f2)=
∫

R

f1(x) f2(x)dx.

The space L∞=L∞(R) consists of all essentially bounded and Lebesgue-measurable func-

tions f with the norm

| f |L∞ =sup| f (x)|<∞.

We denote by W1,∞(R)={ f , s.t. f ,∂x f ∈L∞(R)} endowed with its canonical norm.

For any real constant s ≥ 0, Hs = Hs(R) denotes the Sobolev space of all tempered

distributions f with the norm | f |Hs = |Λs f |L2 < ∞, where Λ is the pseudo-differential

operator Λ=(1−∂2
x)

1/2.

For any two functions u=u(t,x) and v(t,x) defined on [0,T)×R with T>0, we denote

the inner product, the Lp-norm and especially the L2-norm, as well as the Sobolev norm,


