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Abstract. A new finite difference (FD) method, referred to as “Cartesian cut-stencil
FD”, is introduced to obtain the numerical solution of partial differential equations

on any arbitrary irregular shaped domain. The 2nd-order accurate two-dimensional

Cartesian cut-stencil FD method utilizes a 5-point stencil and relies on the construc-
tion of a unique mapping of each physical stencil, rather than a cell, in any arbitrary

domain to a generic uniform computational stencil. The treatment of boundary con-

ditions and quantification of the solution accuracy using the local truncation error
are discussed. Numerical solutions of the steady convection-diffusion equation on

sample complex domains have been obtained and the results have been compared
to exact solutions for manufactured partial differential equations (PDEs) and other

numerical solutions.
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1. Introduction

Many problems in engineering and science can be modeled as initial or bound-

ary value problems using second-order partial differential equations (PDEs), as rep-

resented for example by the unsteady Navier-Stokes equations in fluid mechanics,
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Cauchy-Navier’s equations in elasticity, the Laplace equation in heat transfer and Max-

well’s equations in electromagnetism. Generally speaking, there are three well-estab-

lished mesh-based space discretization methods for the numerical solution of such

PDEs, namely the finite difference (FD) [20], finite volume (FV) [42, 60] and finite

element (FE) [13,59] methods.

Finite difference methods were first introduced by Richardson [45] in his study of

masonry dams, and later in numerical weather prediction. Although many researchers

have successfully applied the finite difference method to a wide range of problems, par-

ticularly in fluid mechanics, and it continues to be implemented in codes used for aca-

demic research, it has not gained much popularity in commercial PDE solver codes, in-

cluding computational fluid dynamics (CFD) software. In order to use FD for very com-

plex geometries, the solution domain must be decomposed into a set of sub-domains

that are transformable to rectangular blocks in a computational domain [27, 56, 63].

The process of generating a good quality structured grid on a highly complex domain

for a FD code can be a time-consuming and costly component of an overall simulation,

and requires a high level of expertise [37, 57]. However, particularly for industrial ap-

plications, it is inevitable that the PDEs have to be solved in highly complex domains.

This is the main reason that, for commercial purposes, researchers and code developers

have largely abandoned the FD approach.

Finite volume (FV) methods originated in the 1970’s and gained popularity after the

seminal work of Patankar and Spalding [43]. There is now a vast literature on develop-

ment, enhancements and applications of the finite volume methodology. FV methods

enjoy flexibility in meshing, being able to handle cells of arbitrary shape and not suffer-

ing from the structured mesh restriction of the FD method. Because of this flexibility,

FV methods can treat flows in highly complex domains like those encountered in many

industrial applications. This is the primary reason that most of the commercial compu-

tational fluid dynamics (CFD) codes today are based on the FV formulation.

The finite element (FE) method was originally developed to solve problems in elas-

ticity and structural mechanics. Key components of the FE method can be found in the

early works of Hrenikoff [30] and Courant [15], but formalization of the method is due

to Turner et al. [59] and Argyris and Kelsey [5]. The phrase “finite element” was coined

by Clough [13] in 1960. FEM has now become an alternative to the FV formulation

in fluid mechanics and multiphysics simulations with the ability to handle arbitrarily

complex domains.

Among these methods, FD is the simplest to understand and therefore is still often

used to explain some key numerical concepts such as order of accuracy, stability and

convergence [20,29].

It is well-known that properly designing the mesh is a critical factor in obtaining an

accurate numerical solution of a PDE. Compared to the use of structured body-fitted

curvilinear grids and unstructured tetrahedral or polyhedral meshes, a Cartesian grid

system is simple and easy to construct [2, 54]. Furthermore, solutions on Cartesian

grids tend to converge better than those of body-fitted methods, and Cartesian grid

methods generally require less storage. Even during the heyday of the development


