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Abstract. We propose a multiscale multilevel Monte Carlo (MsMLMC) method
to solve multiscale elliptic PDEs with random coefficients in the multi-query
setting. Our method consists of offline and online stages. In the offline stage,
we construct a small number of reduced basis functions within each coarse grid
block, which can then be used to approximate the multiscale finite element ba-
sis functions. In the online stage, we can obtain the multiscale finite element ba-
sis very efficiently on a coarse grid by using the pre-computed multiscale basis.
The MsMLMC method can be applied to multiscale RPDE starting with a rel-
atively coarse grid, without requiring the coarsest grid to resolve the smallest-
scale of the solution. We have performed complexity analysis and shown that
the MsMLMC offers considerable savings in solving multiscale elliptic PDEs
with random coefficients. Moreover, we provide convergence analysis of the
proposed method. Numerical results are presented to demonstrate the accu-
racy and efficiency of the proposed method for several multiscale stochastic
problems without scale separation.
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1 Introduction

Many physical and engineering applications involving uncertainty quantifica-
tion (UQ) can be described by stochastic partial differential equations (SPDEs,
i.e., PDEs driven by Brownian motion) or partial differential equations with ran-
dom coefficients (RPDEs). In recent years, there has been an increased interest
in the simulation of systems with uncertainties, and several numerical meth-
ods have been developed in the literature to solve SPDEs and RPDEs; see e.g.
[2, 14, 15, 21, 25, 27, 28, 31, 33, 35, 37, 38]. These methods can be effective when the
dimension of stochastic input variables is low. However, their performance de-
teriorates dramatically when the dimension of stochastic input variables is high
because of the curse of dimensionality.

There are some attempts in developing sparsity or data-driven basis to at-
tack these challenging problems. Most of them take advantage of the fact that
even though the stochastic input has high dimension, the solution actually lives
in a relatively low dimensional space. Therefore, one can develop certain spar-
sity or data-driven basis functions to solve the SPDEs and RPDEs efficiently. In
[7–9,20,39,40], Hou et al. explored the Karhunen-Loève expansion of the stochas-
tic solution, and constructed problem-dependent stochastic basis functions to
solve these SPDEs and RPDEs. In [11, 26], the compressive sensing technique is
employed to identify a sparse representation of the solution in the stochastic di-
rection. In [5, 6], Schwab et al. studied the sparse tensor discretization of elliptic
RPDEs.

In this paper, we consider another challenge in UQ, i.e., solving multiscale
elliptic PDEs with random coefficients. Due to the large range of scales in these
solutions, it requires tremendous computational resources to resolve the small
scales of the solution. We propose a multiscale multilevel Monte Carlo method
(MsMLMC) to significantly reduce the computational cost in solving multiscale
elliptic PDEs with random coefficients. We use the following elliptic equation
with multiscale random coefficient as an example to illustrate the main idea of
our approach:

−∇·(aε(x,ω)∇uε(x,ω))= f (x), x∈D, ω∈Ω, (1.1)

uε(x,ω)=0, x∈∂D, (1.2)

where D⊂Rd is a bounded spatial domain, Ω is a sample space, and f (x)∈L2(D).
The multiscale information is described by the multiscale coefficient aε(x,ω). The
precise definition of the aε(x,ω) will be given in Section 3.1.

Our MsMLMC method consists of two steps. In the first step, we apply
the non-intrusive method (Monte Carlo or stochastic collocation method) to dis-


