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AN ADAPTIVE VISCOSITY E–SCHEME FOR DEGENERATE

CONSERVATION AND BALANCE LAWS

EBISE ADUGNA ABDI AND HANS JOACHIM SCHROLL

Abstract. An adaptive E–scheme for degenerate, viscous balance laws is presented. Taking into
account natural diffusion, numerical viscosity is locally reduced to a minimum. Numerical experiments
demonstrate the improved accuracy of the adaptive scheme. Explicit and implicit three–point E–schemes
are monotone, TVD and nonlinearly stable. A high–resolution version of the adaptive E–scheme is
derived and tested in experiments. The latter is not necessarily monotone, but TVD.
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1. Introduction

For scalar conservation laws ut+f(u)x = 0 the entropy solution may be constructed as
the vanishing viscosity weak solution to the viscous conservation law ut + f(u)x = duxx.
Numerical methods for hyperbolic conservation laws appeal to that principle by using
artificial, vanishing viscosity. For example, the classical Lax–Friedrichs scheme applies
the numerical viscosity d = ε∆x where ε = 0.5∆x/∆t. By the CFL–condition ε is
bounded from below 2ε ≥ ‖f ′‖∞. In agreement with the concept: sufficient diffusion
grants stability, Tadmor [25] showed that any scheme containing more numerical viscosity
than Godunov’s scheme is entropy–stable. Moreover, it is exactly the class of E–schemes
[21] that have no less numerical viscosity than that of Godunov.

In this paper we present an adaptive viscosity E–scheme for degenerate, viscous con-
servation laws

(1) ut + f(u)x = (d(u, x)ux)x , d(u, x) ≥ 0

making use of the given ”natural” diffusion d(u, x) ≥ 0 and adding only that much nu-
merical viscosity as needed for stability. The resulting adaptive viscosity scheme is an
E–scheme. In Sect. 5 we prove that explicit three-point E–schemes are monotone. Ap-
plying the calculus of inverse–monotone matrices, it is shown in Sect. 6 that also implicit
E–schemes are monotone. Using Kröner’s version [18] of Harten’s theorem [10], it follows
that ϑ–time stepping with E–fluxes is a TVD operation, see Sect. 7. Numerical exper-
iments in Sect. 9 demonstrate the effect of reduced numerical viscosity in the presence
of natural diffusion. Finally, in Sect. 13 a nonlinear reaction term is included in the
analysis and stability of the adaptive E–scheme when applied to balance laws is proven.
Conclusions follow in Sect. 14.

The numerical analysis of possibly degenerate convection–diffusion equations has a
long history. Some milestones are the following: Crandall and Majda [5] studied mono-
tone schemes. Breuß[2, 3] presented a rigorous theory of implicit, monotone methods.
Osher [21] introduced E–schemes and Tadmor [25] showed their entropy stability by
comparison to the classical Godunov scheme. Even so these schemes are designed for
hyperbolic conservation laws, their analysis relies on numerical viscosity. Karlsen et al.
in a series of papers [7, 6, 4, 12, 13, 14] developed the theory and numerics of strongly
degenerate convection–diffusion equations. In [7] they found that strongly degenerate
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problems develop more complex structures than purely hyperbolic equations. A class of
conservative–form difference schemes, treating the convective and diffusive flux as one ef-
fective conservative flux, is shown to converge to the unique BV entropy weak solution.
Our contribution is to minimize the numerical diffusion in the effective flux (without
solving nonlinear Riemann problems). In [4] Chen and Karlsen establish continuous de-
pendence for anisotropic degenerate parabolic PDEs. Anisotropic numerical viscosity
appears in finite volume schemes on unstructured grids where total variation bounds are
not available. Error estimates and convergence rates are given in [12, 13, 14].

2. Preliminaries

Consider the convection–diffusion equation (1) with f ∈ C1(R), ‖f ′‖∞ < ∞ and pos-
sibly degenerate ”natural” diffusion d(u, x) ≥ 0. Let ε∆x ≥ 0 denote artificial diffusion
and D = d + ε∆x the effective, total diffusion. On an uniform mesh xj = j∆x, ∆x > 0
the second order central difference operator

−
1

∆x2ΓD ≈ ∂x (D∂x)

is given by a symmetric matrix. At inner grid points it has the local structure

ΓD ∼




Dj−3/2 +Dj−1/2 −Dj−1/2

−Dj−1/2 Dj−1/2 +Dj+1/2 −Dj+1/2

−Dj+1/2 Dj+1/2 +Dj+3/2




where Dj+1/2 = D(xj+1/2) is evaluated at the interface xj+1/2 = (j + 1/2)∆x. The
convection term is discretized as

f(u)x ≈
1

2∆x
Λφ(u) ,

where φ denotes the diagonal field φ(u)j = f(uj) and Λ is the anti–symmetric, central
difference operator

Λ ∼




0 1

−1 0 1

−1 0


 .

For periodic problems it will be sufficient to consider ”inner” mesh points. Applying
periodic boundary conditions and identifying overlapping points the equations at the
boundary are the same, see Sect. 8. Also note the finite mesh and finite dimensional
discrete operators represented by finite matrices.

The convection diffusion operator −f(u)x + (d(u, x)ux)x is discretized by central dif-
ferences

F∆x(u) = −
1

∆x2ΓDu−
1

2∆x
Λφ(u) .

The classical, central difference scheme has no artificial diffusion ε = 0, while Lax–
Friedrichs uses ε = 1

2
∆x
∆t . The forward marching scheme

un+1 = un +∆tF∆x(u
n) = H(un)

is monotone in the sense of Crandall and Majda [5] if H = I+∆tF∆x is a non–decreasing
function in all unknowns. In particular, the JacobianDF∆x is off–diagonal non–negative,
or quasi–positive.

Whenever diffusion D = d+ ε∆x does not depend on u, the Jacobian reads

DF∆x(u) = −
1

∆x2ΓD −
1

2∆x
Λdiag(f ′(u))


