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Abstract. An application of the meshless Local Radial Basis Function Collocation
Method (LRBFCM) [22, 30–33] in solution of incompressible turbulent combined
forced and natural convection is for the first time explored in the present paper.
The turbulent flow equations are described by the low-Re number k − ε model with
Launder and Sharma [23] and Abe et al. [1] closure coefficients. The involved tem-
perature, velocity, pressure, turbulent kinetic energy and dissipation fields are rep-
resented on overlapping 5-noded sub-domains through the collocation by using
multiquadrics Radial Basis Functions (RBF). The involved first and second order
partial derivatives of the fields are calculated from the respective derivatives of the
RBF’s. The involved equations are solved through the explicit time stepping. The
pressure-velocity coupling is based on Chorin’s fractional step method [11]. The
adaptive upwinding technique, proposed by Lin and Atluri [27], is used because
of the convection dominated situation. The solution procedure is represented for
a 2D upward channel flow with differentially heated walls. The results have been
assessed by achieving a reasonable agreement with the direct numerical simula-
tion of Kasagi and Nishimura [20] for Reynolds number 4494, based on the channel
width, and Grashof number 9.6× 105. The advantages of the represented mesh-free
approach are its simplicity, accuracy, similar coding in 2D and 3D, and straightfor-
ward applicability in non-uniform node arrangements.
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1 Introduction

Meshless methods represent a particular class of numerical methods for solving engin-

∗Corresponding author.
URL: www.ung.si
Email: robert.vertnik@ung.si (R. Vertnik), bozidar.sarler@ung.si (B. Šarler)
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eering and science problems. They differ from the classical numerical methods such
as the Finite Difference Method (FDM), the Finite Element Method (FEM), and the
Boundary Element Method (BEM) in the principal characteristic that the solution is
represented on a set of nodes which are not confined to coordinate lines (as in FDM),
and no polygonisation of the domain (as in FEM) or boundary (as in BEM) is re-
quired. There is a strong development in this class of novel numerical methods,
demonstrated by the emerging books [3, 4, 8, 12, 26, 28, 29] and conference proceed-
ings [5,13]. There exists a simple class of meshless methods, structured on collocation
of the continuum fields by the radial basis functions [9]. The method has been pio-
neered by Kansa [18,19] and since then experiences a very fast development [31]. The
main disadvantage of the original Kansa’s formulation of the method was its inability
to cope with large-scale problems due to the involved ill-conditioned full collocation
matrices. This drawback was overcome in an elegant way through the local version
of the method-LRBFCM, where the collocation is made point-wise on a subsets of the
nodes [31] instead on their entire set.

In the last century, a lot of research has been devoted towards understanding of
the turbulent flows. In spite of those attempts, a general physical theory still does
not exist. Numerically, those flows could be very well predicted by the direct numeri-
cal simulation (DNS) of the Navier-Stokes equations. Unfortunately, in the DNS very
fine spatial discretization has to be used in order to model and track all eddies of the
flow, especially the smallest ones. The applicability of the DNS is currently limited to
very simple geometries and for turbulent flows with moderate Reynolds (Re) num-
bers [24]. Other turbulent models are mainly derived through the time-averaging of
the Navier-Stokes (N-S) equations. Due to the nonlinearity of the time-averaged N-
S equations, a closure problem arises (more unknowns than equations), which puts
these family of models into the category of semi-empirical ones. Various models were
proposed [36], which are rather old, but still in use nowadays. Probably the most
known and representative is the family of two-equation k − ε models, which are fur-
ther divided into two groups, standard (ST) and low-Re (LRN) models. The ST k − ε
models use the wall-functions, while the LRN models use special closure coefficients
to correctly predict the turbulent boundary layers. Better predictions are obtained
with the LRN models, but a very fine disretization near the walls is required. In this
work, the LRN k − ε model is used with the closure coefficients proposed by Launder
and Sharma (LS) [23] and Abe et al. (AKN) [1].

The experimental and numerical investigation of turbulent flow due to the nat-
ural convection still remains very challenging. A lot of efforts were put into solv-
ing the turbulent natural convection in a closed square cavity [2, 16, 17, 40], where
the system is closed and the natural convection is the only mechanism which drives
the turbulent flow. However, many applications in nature and industry characterise
the open layout in which the combined turbulent forced and natural convection take
place. These problems became more interesting for researchers after the first DNS data
were available in the mid-nineties. Kasagi and Nishimura [20] performed DNS calcu-
lations of fully developed turbulent flow between two vertical parallel plates kept


