
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS
J. Part. Diff. Eq., Vol. 33, No. 1, pp. 17-38

doi: 10.4208/jpde.v33.n1.2
March 2020

Gradient Estimates for a Nonlinear Heat Equation
Under Finsler-geometric Flow

ZENG Fanqi∗

School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000,
China.

Received 22 December 2019; Accepted 23 January 2020

Abstract. This paper considers a compact Finsler manifold (Mn,F(t),m) evolving un-
der a Finsler-geometric flow and establishes global gradient estimates for positive so-
lutions of the following nonlinear heat equation

∂tu(x,t)=∆mu(x,t), (x,t)∈M×[0,T],

where ∆m is the Finsler-Laplacian. By integrating the gradient estimates, we derive the
corresponding Harnack inequalities. Our results generalize and correct the work of S.
Lakzian, who established similar results for the Finsler-Ricci flow. Our results are also
natural extension of similar results on Riemannian-geometric flow, previously studied
by J. Sun. Finally, we give an application to the Finsler-Yamabe flow.
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1 Introduction

The paper studies nonlinear heat equation

∂tu(x,t)=∆mu(x,t) (1.1)

on a compact Finsler manifold (Mn,F(t),m) evolving by the Finsler-geometric flow

∂

∂t
g(t)=2h(t), (1.2)
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where (x,t)∈ M×[0,T], g(t) is the symmetric metric tensor associated with F, and h(t)
is a symmetric (0,2)-tensor field on (Mn,F(t),m). An important example would be the
case where h(t) =−Ricij(t) and g(t) is a solution of the Finsler-Ricci flow introduced
by Bao [1]. Unlike the usual Laplacian, the Finsler-Laplacian ∆m is a nonlinear opera-
tor. For the existence, uniqueness and Sobolev regularity of a positive global solution of
the nonlinear heat equation (1.1) (in the sense of distributions), we can see [2]. We will
give some gradient estimates and Harnack inequalities for positive global solutions of
equation (1.1).

The study of gradient estimates for the heat equation originated with the work of
P. Li and S.-T. Yau [3]. They proved a space-time gradient estimate for positive solu-
tions of the heat equation on a complete manifold. By integrating the gradient estimate
along a space-time path, a Harnack inequality was derived. Therefore, Li-Yau inequal-
ity is often called differential Harnack inequality. Li-Yau type gradient estimates have
been obtained for other nonlinear equations on manifolds, see for example [4-13] and
the references therein. Over the past two decades, many authors used similar techniques
to prove gradient estimates and Harnack inequalities for geometric flows. For instance,
in [14], weakening Guenther’s curvature constrains in [15] on the boundedness of the
gradient of scalar curvature in addition to the boundedness of the Ricci curvature, Liu
established first order gradient estimates for positive solutions of the heat equations on
complete noncompact or closed Riemannian manifolds under Ricci flows. As applica-
tions, he derived Harnack type inequalities and second order gradient estimates for pos-
itive solutions. Generalizing Liu’s work to general geometric flow, Sun [16] established
first order and second order gradient estimates for positive solutions of the heat equa-
tions under general Riemannian-geometric flows. The list of relevant references includes
but is not limited to [17-21].

Comparatively, there are less works on Finsler manifolds about gradient estimates of
the nonlinear heat equation (1.1). To the best of our knowledge, in [22], Ohta and Sturm
derived a Li-Yau gradient estimate as well as parabolic Harnack inequalities on compact
Finsler manifolds. In [23], Lakzian derived differential Harnack estimates for positive
global solutions to (1.1) under Finsler-Ricci flow. Later, the author and He [24] general-
ized and corrected Lakzian’s results under some curvature constraints. Compared to the
Riemannian case, it is harder to get the gradient estimate due to some obstructions. First,
the solutions of (1.1) are lack of higher order regularity. Second, ∆mu has no definition
at the maximum point of u, and thus we cannot use Finsler-Laplacian to adopt maxi-
mum principle. Last but not least, in view of nonlinear property of gradient operator, it
is difficult to do the calculations. In this paper, we follow the work of Sun [16], and estab-
lish some gradient estimates for positive global solutions of (1.1) under Finsler-geometric
flow (1.2), which are richer than [16,22-24].

The rest of this paper is organized as follows.
In Section 2, we first briefly review some facts and results about Finsler geometry. In

Section 3, we establish space-time gradient estimates for positive global solution of (1.1),


