Nonlinear Degenerate Anisotropic Elliptic Equations with Variable Exponents and L^{1} Data

KHELIFI Hichem ${ }^{1,2, *}$ and MOKHTARI Fares ${ }^{1}$
${ }^{1}$ Department of Mathematics and Informatics, University of Algiers, Algiers, Algeria. 2 Street Didouche Mourad Algiers.
${ }^{2}$ Applied Mathematics Laboratory, Badji Mokhtar University-Annaba B.P. 12, Algeria.

Received 31 March 2019; Accepted 24 January 2020

Abstract

This paper is devoted to the study of a nonlinear anisotropic elliptic equation with degenerate coercivity, lower order term and L^{1} datum in appropriate anisotropic variable exponents Sobolev spaces. We obtain the existence of distributional solutions.

AMS Subject Classifications: 35J70, 35J60, 35D30
Chinese Library Classifications: O175.27
Key Words: Sobolev spaces with variable exponents; anisotropic equations; elliptic equations; L^{1} data.

1 Introduction

In this paper we prove the existence of solutions to the nonlinear anisotropic degenerate elliptic equations with variable exponents, of the type

$$
\begin{array}{ll}
-\sum_{i=1}^{N} D_{i} a_{i}(x, u, \nabla u)+g(x, u, \nabla u)=f, & \text { in } \Omega, \tag{1.1}\\
u=0, & \text { on } \partial \Omega,
\end{array}
$$

where $\Omega \subseteq \mathbb{R}^{N}(N \geq 3)$ is a bounded domain with smooth boundary $\partial \Omega$ and the righthand side f in $L^{1}(\Omega), D_{i} u=\frac{\partial u}{\partial x_{i}}$. We suppose that $a_{i}: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}, i=1, \ldots, N$ are

[^0]Carathéodory functions such that for almost every x in Ω and for every $(\sigma, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$ the following assumptions are satisfied for all $i=1, \ldots, N$

$$
\begin{align*}
& \left|a_{i}(x, \sigma, \xi)\right| \leq \beta\left(|k(x)|+|\sigma|^{\bar{p}(x)}+\sum_{j=1}^{N}\left|\xi_{j}\right|^{p_{j}(x)}\right)^{1-\frac{1}{p_{i}(x)}}, \tag{1.2}\\
& \sum_{i=1}^{N}\left(a_{i}(x, \sigma, \xi)-a_{i}(x, \sigma, \eta)\right)\left(\xi_{i}-\eta_{i}\right)>0, \quad \forall \xi \neq \eta \tag{1.3}\\
& \sum_{i=1}^{N} a_{i}(x, \sigma, \xi) \xi_{i} \geq \alpha \sum_{i=1}^{N} \frac{\left|\xi_{i}\right|^{p_{i}(x)}}{(1+|\sigma|)^{\gamma_{i}(x)}} \tag{1.4}
\end{align*}
$$

where $\beta>0, \alpha>0$, and $k \in L^{1}(\Omega), \gamma_{i}: \bar{\Omega} \rightarrow \mathbb{R}^{+}, p_{i}: \bar{\Omega} \rightarrow(1,+\infty)$ are continuous functions and \bar{p} is such that

$$
\frac{1}{\bar{p}(\cdot)}=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{p_{i}(\cdot)} .
$$

We introduce the function

$$
\bar{p}^{*}(x)= \begin{cases}\frac{N \bar{p}(x)}{N-\bar{p}(x)}, & \text { if } \bar{p}(x)<N, \tag{1.5}\\ +\infty, & \text { if } \bar{p}(x) \geq N\end{cases}
$$

The nonlinear term $g: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function such that for a.e. $x \in \Omega$ and all $(\sigma, \xi) \in \mathbb{R} \times \mathbb{R}^{N}$, we have

$$
\begin{align*}
& |g(x, \sigma, \xi)| \leq b(|\sigma|)\left(c(x)+\sum_{i=1}^{N}\left|\xi_{i}\right|^{p_{i}(x)}\right), \tag{1.6}\\
& g(x, \sigma, \xi) \cdot \sigma \geq 0 \tag{1.7}
\end{align*}
$$

where $b: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous and increasing function with finite values, $c \in L^{1}(\Omega)$ and $\exists \rho>0$ such that:

$$
\begin{equation*}
|g(x, \sigma, \xi)| \geq \rho\left(\sum_{i=1}^{N}\left|\xi_{i}\right|^{p_{i}(x)}\right), \quad \forall \sigma \text { such that }|\sigma|>\rho . \tag{1.8}
\end{equation*}
$$

In [1], the authors obtain the existence of renormalized and entropy solutions for the nonlinear elliptic equation with degenerate coercivity of the type

$$
-\operatorname{div}\left[a(x, u)|\nabla u|^{p(x)-2} \nabla u\right]+g(x, u)=f \in L^{1}(\Omega) .
$$

For $g \equiv 0$ and $f \in L^{m(\cdot)}(\Omega)$, with $m(x) \geq m_{-} \geq 1$, equation of the from (1.1) have been widely studied in [2], where the authors obtain some existence and regularity results for the solutions. If $g \equiv|u|^{\mid s(x)-1} u$,

$$
a_{i}(x, u, \nabla u)=\frac{\left|D_{i} u\right|^{p_{i}(x)-2} D_{i} u}{(1+|u|)^{\gamma_{i}(x)}}
$$

[^0]: *Corresponding author. Email addresses: khelifi.hichemedp@gmail.com (H. Khelifi), f.mokhtari@univ-alg -er.dz (F. Mokhtari)

