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Abstract. This paper presents a fourth-order kernel-free boundary integral method
for the time-dependent, incompressible Stokes and Navier-Stokes equations defined
on irregular bounded domains. By the stream function-vorticity formulation, the
incompressible flow equations are interpreted as vorticity evolution equations. Time
discretization methods for the evolution equations lead to a modified Helmholtz
equation for the vorticity, or alternatively, a modified biharmonic equation for the
stream function with two clamped boundary conditions. The resulting fourth-order
elliptic boundary value problem is solved by a fourth-order kernel-free boundary in-
tegral method, with which integrals in the reformulated boundary integral equation
are evaluated by solving corresponding equivalent interface problems, regardless of
the exact expression of the involved Green’s function. To solve the unsteady Stokes
equations, a four-stage composite backward differential formula of the same or-
der accuracy is employed for time integration. For the Navier-Stokes equations, a
three-stage third-order semi-implicit Runge-Kutta method is utilized to guarantee
the global numerical solution has at least third-order convergence rate. Numeri-
cal results for the unsteady Stokes equations and the Navier-Stokes equations are
presented to validate efficiency and accuracy of the proposed method.
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1. Introduction

In the incompressible viscous flow simulations, the Navier-Stokes equations take
the form

∂u

∂t
+ (u · ∇)u− ν∆u +

1

ρ
∇p = f , (1.1a)

∇ · u = 0, (1.1b)

where u is the fluid velocity, p is the pressure, ρ is the density, ν is the kinematic
viscosity and f is an external body force per unit mass. The second equation in (1.1)
holds under the incompressible assumption that the fluid density ρ is uniform. Once the
convection term (u · ∇)u is neglected for low Reynolds flow, while the dependency of
u on time evolution ∂u/∂t is retained, the Navier-Stokes equations (1.1) are linearized
to the following unsteady Stokes equations,

∂u

∂t
− ν∆u +

1

ρ
∇p = f , (1.2a)

∇ · u = 0, (1.2b)

which describes motion of viscous incompressible flow with slow velocity and large
viscosity. Eqs. (1.1) and (1.2) are completed by initial and boundary conditions for
the velocity field u, whereas no conditions are prescribed for the pressure field p. This
leads to a difficulty of updating the unknown pressure in time advancing.

There are two mainstream ways in overcoming this issue. One is to eliminate the
pressure term from the equations by taking curl over the governing equation, then the
divergence constraint can be simply substituted and naturally satisfied [1–3]. Another
is to interpret the pressure as the counterpart in equilibrium with the time-dependent
divergence-free velocity field. In this way, velocity and pressure gradient are often
connected by certain approximate or artificial divergence constraint and updated in
a time-splitting scheme [4–7]. The method used in the current work is based on the
former type, the so-called stream function-vorticity formulation.

The formulation is a coupled system, consisting of a nonlinear vorticity transport
equation and a stream-function Poisson equation. The problem is often supplied with
a no-slip boundary condition (BC), which gives a homogeneous expression for both
the stream function and its normal derivative. However, no BCs are prescribed for the
vorticity. A simple attempt is to update the vorticity only at the interior grid points by
some explicit methods such as the time-forward or the Dufort-Frankel scheme so that
boundary values of the vorticity are not required [1, 8, 9]. Then the stream function
at new time step can be obtained by solving the Poisson equation with the updated
vorticity as the source term. This method has limited development in the early years.
Intensive efforts were made with implicit schemes, which however pose difficulty in
boundary vorticity approximation. There are two classes of BCs for the vorticity trans-
port equation. Those represented by Thoms formula [10], Woods’s formula [11] and


