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Abstract

We investigate the problem of robust matrix completion with a fraction of observation

corrupted by sparsity outlier noise. We propose an algorithmic framework based on the

ADMM algorithm for a non-convex optimization, whose objective function consists of

an ℓ1 norm data fidelity and a rank constraint. To reduce the computational cost per

iteration, two inexact schemes are developed to replace the most time-consuming step

in the generic ADMM algorithm. The resulting algorithms remarkably outperform the

existing solvers for robust matrix completion with outlier noise. When the noise is severe

and the underlying matrix is ill-conditioned, the proposed algorithms are faster and give

more accurate solutions than state-of-the-art robust matrix completion approaches.
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1. Introduction

The problem of matrix completion refers to completing a matrix with many missing entries,

and it arises from various applications in statistics, machine learning, and computer vision. This

problem is possible to solve only if the underlying matrix is “simple”, because otherwise the

matrix contains too much information to infer from the limited observed entries. A commonly

used notion of simplicity for matrices is low rank [11,13,17,32,33], which provides redundancy

of matrix entries. The low rank matrix model is remarkably successful in many applications in

machine learning, such as collaborative filtering [38] and the Netflix prize problem [4].

Let M ∈ R
m×n be the underlying low-rank matrix we would like to estimate. Let Ω ⊆

[m] × [n] be a set of indices with |Ω| ≪ mn, where [m] = {1, 2, . . . ,m} and the same for [n].

In the problem of matrix completion, only the entries {Mij : (i, j) ∈ Ω} are observed and the

other entries are missing. One would like to reconstruct the underlying low-rank matrix M

from {Mij : (i, j) ∈ Ω}. The approaches of low-rank matrix completion can be divided into two

categories, namely, convex and non-convex optimization based approaches.
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Convex optimization based approaches are formulated from the rank minimization. With

sufficiently many observed entries and some mild assumptions, M is the only low-rank matrix

in the set {X ∈ R
m×n | Xij = Mij , (i, j) ∈ Ω} of matrices that are consistent with observed

entries. In this case, the low-rank matrix completion can be reconstructed by solving the

following constrained rank minimization:

min
X∈Rm×n

rank(X)

s.t. Xij = Mij , (i, j) ∈ Ω.
(1.1)

However, (1.1) is non-convex and, more critically, NP-hard. Therefore, it is computationally

intractable. To overcome these, a popular strategy is to replace the rank function in (1.1) by

its convex relaxation, the nuclear norm [11–13], to solve the following convex optimization

min
X∈Rm×n

‖X‖∗

s.t. Xij = Mij , (i, j) ∈ Ω.
(1.2)

Problem (1.2) can be reformulated as a special case of semi-definite programming (SDP) [37],

for which polynomial time solvers exist. It was proved in [11,13,22,36] that the unique solution

of (1.2) is M under suitable assumptions. Thus, one can complete a low-rank matrix in

polynomial time with theoretical guarantee. In real applications, the observed entries are

usually corrupted by noise. Under this circumstance, it is natural to consider the nuclear norm

regularized optimization

min
X∈Rm×n

1

2

∑

(i,j)∈Ω

(Xij − M̃ij)
2 + λ‖X‖∗, (1.3)

where M̃ij , (i, j) ∈ Ω, are noisy observations. When there is only a small amount of noise in the

observed entries, the model (1.3) is provably accurate with the reconstruction error proportional

to the noise level [11]. Though off-the-shelf SDP solvers can be applied to solve (1.2) and (1.3),

numerically, they are not the most efficient, especially when the matrix size is moderately large.

Customized first-order algorithms (e.g., [8,29,31,41]) are developed for solving (1.2) and (1.3).

Most of them invoke the singular value thresholding (SVT) operator [8] at each iteration. The

most expensive part of these algorithms is the computation of SVT in each iteration. The usual

strategy is to compute the singular value decomposition (SVD) followed by the soft-thresholding

on the singular values.

To improve the performance of nuclear norm optimization based matrix completion, we may

consider non-convex optimization based approaches. Assume that rank(M) = r is known, then

the matrix completion problem can be reformulated as the following constrained least-squares

problem

min
X∈Rm×n

∑

(i,j)∈Ω

(Xij − M̃ij)
2

s.t. rank(X) = r.

(1.4)

Since (1.4) is a non-convex optimization, the challenge here is how to find the global minimum

with a provable guarantee. In the past a few years, there is a burst of research works on the

design and analysis of provable non-convex matrix completion algorithms by solving (1.4) and

its variants. There are two types of such numerical algorithms. One type of algorithms treat the


