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Abstract

We propose and analyze a C0-weak Galerkin (WG) finite element method for the numer-

ical solution of the Navier-Stokes equations governing 2D stationary incompressible flows.

Using a stream-function formulation, the system of Navier-Stokes equations is reduced

to a single fourth-order nonlinear partial differential equation and the incompressibility

constraint is automatically satisfied. The proposed method uses continuous piecewise-

polynomial approximations of degree k + 2 for the stream-function ψ and discontinuous

piecewise-polynomial approximations of degree k + 1 for the trace of ∇ψ on the interele-

ment boundaries. The existence of a discrete solution is proved by means of a topological

degree argument, while the uniqueness is obtained under a data smallness condition. An

optimal error estimate is obtained in L2-norm, H1-norm and broken H2-norm. Numerical

tests are presented to demonstrate the theoretical results.
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1. Introduction

Let Ω ⊂ R
2 be a bounded, convex, simply connected polygonal domain with boundary ∂Ω.

It is well-known that in two dimensions, the Navier-Stokes equations can be written in the

following stream-function formulation [3, 12, 18]:
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= f, in Ω,

ψ = g1, on ∂Ω,
∂ψ
∂ν = g2, on ∂Ω,

(1.1)

where ψ is a stream-function, µ = Re−1 > 0 is the fluid viscosity coefficient with Re denoting

the Reynolds number, f ∈ L2(Ω), ν is the outward unit normal vector to ∂Ω, g1 and g2 are
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appropriate boundary data. The stream-function ψ can be associated with the divergence-free

velocity field U via

U = (u, v) = curlψ :=
( ∂ψ

∂x2
,−

∂ψ

∂x1

)

. (1.2)

The attractions of the stream-function formulation are that the incompressibility constraint is

automatically satisfied and there is only one unknown field to solve. A possible approach for

the problem (1.1) is to use conforming finite element methods. The advantage of this approach

is that convergence is easy to be guaranteed, while the disadvantage is that it requires C1 finite

elements which are quite complicated [14]. In practice, this is far from desirable. To overcome

this difficulty, nonstandard methods have been developed for the problem (1.1) and also for the

fourth-order elliptic problems, such as the nonconforming method [3], the C0 interior penalty

methods [2], the discontinuous Galerkin methods [18] and the mixed methods [12].

Another way to avoid constructingH2-conforming finite elements is to use the weak Galerkin

(WG) methods. The main feature of the WG method is that differential operators are approxi-

mated by weak forms as distributions and a stabilization term is added to enforce a weak conti-

nuity of the approximation functions. Thus there is no need to construct C1 finite elements to

solve (1.1). The WG method was first proposed and analyzed in [23] for general second order

elliptic problems and applied to many other problems: Stokes problems [5,24], quasi-Newtonian

Stokes problem [28], Navier-Stokes problem [27], Brinkman equations [25], convection-diffusion-

reaction problems [6], elasticity problems [7] and wave equation [16]. Recently, the WG methods

have been successfully applied to fourth order elliptic problems [4,19,20,22,26]. Roughly speak-

ing, there are two types of WG methods for fourth order equations: C0-WG and non-C0-WG.

The C0-WG methods use continuous piecewise-polynomials (so it is called “C0”), while non-

C0 methods use totally discontinuous polynomials on meshes. An advantage of the non-C0

methods is that it allows to use polygonal or polyhedral meshes. In contrast, though C0-WG

method does not generally allow to use polygonal or polyhedral meshes, it reduces less number

of unknowns due to the continuity requirement. Considering the successful application of WG

to fourth order problem, it is quite natural to ask whether it is possible to extend these meth-

ods to nonlinear fourth order equations. In addition, to our best of knowledge, the researches

on WG methods for Navier-Stokes equations in stream-function formulation have not yet been

reported before, and this also motivates us to employ WG methods to the problem (1.1).

Our C0-WG method uses continuous piecewise-polynomial approximations of degree k +

2 (k ≥ 0) for the stream-function ψ and discontinuous piecewise-polynomial approximations of

degree k + 1 for the trace of ∇ψ on the interelement boundaries. The existence of a discrete

solution is proved by means of a topological degree argument, and the solution is also unique

provided a data smallness condition on f is verified. We also prove the optimal error estimate

in L2-norm, H1-norm and broken H2-norm, and numerical tests are provided to illustrate and

confirm our theoretical analysis.

The paper is arranged as follows. In Section 2, we provide necessary notations and weak

formulation for the 2D Navier-Stokes equations in stream-function formulation. In Section 3,

some basic and important results are presented. In Section 4, we prove the existence and

uniqueness of the approximation, and give the error estimates in broken H2-norm. In Section

5, we establish some error estimates in H1 and L2-norm. Finally, we do some numerical tests

in Section 6.


