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Abstract

A numerical scheme for the Reissner–Mindlin plate model is proposed. The method

is based on a discrete Helmholtz decomposition and can be viewed as a generalization of

the nonconforming finite element scheme of Arnold and Falk [SIAM J. Numer. Anal.,

26(6):1276–1290, 1989]. The two unknowns in the discrete formulation are the in-plane

rotations and the gradient of the vertical displacement. The decomposition of the discrete

shear variable leads to equivalence with the usual Stokes system with penalty term plus

two Poisson equations and the proposed method is equivalent to a stabilized discretization

of the Stokes system that generalizes the Mini element. The method is proved to satisfy a

best-approximation result which is robust with respect to the thickness parameter t.
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1. Introduction

The transverse displacement w of a thin elastic plate of thickness t > 0 whose mid-surface

is a bounded, open, simply connected, polygonal Lipschitz domain Ω ⊆ R2 and the rotation

φ of the plate’s fibers normal to the mid-surface are described by the Reissner–Mindlin plate

model. Given a (re-scaled) transverse load f ∈ L2(Ω), the Reissner–Mindlin plate problem with

clamped boundary condition seeks w ∈ H1
0 (Ω) and φ ∈ Φ := [H1

0 (Ω)]2 such that

a(φ, ψ) + λt−2(∇w − φ,∇v − ψ)L2(Ω) = (f, v)L2(Ω) for all (v, ψ) ∈ H1
0 (Ω)× Φ. (1.1)

Here, the bilinear form a(·, ·) is defined by a(φ, ψ) := (ε(φ),Cε(ψ))L2(Ω) for the linear green

strain ε(·) = symD(·) and the linear elasticity tensor C that acts on any symmetric matrix

A ∈ R2×2 as follows

CA =
E

12(1− ν2)
((1− ν)A+ ν tr(A)I2×2).

For isotropic materials it is determined by Young’s modulus E > 0 and the Poisson ratio

0 < ν < 1/2. Those also determine the constant λ in (1.1), which reads λ = (1 + ν)−1Eκ/2

with a shear correction factor κ usually chosen as 5/6. More details on the mathematical model

can be found in [5, 6].
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Standard schemes are known to exhibit shear locking and yield poor results for small thick-

ness t� h. The reader is referred to [6,9] and the references therein for an overview of numerical

schemes. It was the observation of Brezzi and Fortin [8] that the Helmholtz decomposition of the

shear variable ζ := t−2(∇w − φ) may serve as the key for the robust numerical approximation

of (1.1). Arnold and Falk [3] discovered a discrete analogue to that decomposition which led to

a robust nonconforming finite element discretisation. Their discrete Helmholtz decomposition

turned out useful for other purposes, too; but in its original form it is restricted to piecewise

affine finite element functions and so to the lowest-order case. In [13] the generalization of the

discrete Helmholtz decomposition to higher polynomial degrees from [14] was combined with

the Taylor–Hood element [5] and optimal-order convergence rates were proved for the rotation

variable through a superconvergence analysis. In this article we present and analyze the gener-

alization of Arnold and Falk’s scheme to higher polynomial degrees. This involves higher-order

analogues of the Mini element. We formulate the new scheme in §2 and give robust a priori error

estimates in §3. The numerical experiments of §4 investigate the performance of the method.

Standard notation on Lebesgue and Sobolev spaces applies throughout this paper. The L2

inner product is denoted by (v, w)L2(Ω). The space of L2(Ω) functions with vanishing global

average reads L2
0(Ω). For a function v and a vector field ψ, the following differential operators

are defined

divψ = ∂1ψ1 + ∂2ψ2, rotψ = ∂1ψ2 − ∂2ψ1, Curl v =

(
−∂2v

∂1v

)
.

The notation A . B abbreviates A ≤ CB for some constant C that is independent of the mesh

size and the plate’s thickness t.

2. The Method

This section is devoted to the precise definition of the novel method in Section 2.1. The

discretization space for φ is stabilized with local bubble functions. Those can be condensated

in the resulting system matrix. This is explained in more detail in Section 2.2.

2.1. Definition of the method

The new numerical scheme for Reissner–Mindlin plates is based on an equivalent reformu-

lation of the original problem (1.1) based on the space of gradients Z := ∇H1
0 (Ω). We assume

that Ω is simply connected. With the spaces X := [L2(Ω)]2 and Q := H1(Ω) ∩ L2
0(Ω), the

Helmholtz decomposition gives the following characterization

Z = {σ ∈ X | (σ,Curl q)L2(Ω) = 0 for all q ∈ Q}.

Note that, in two dimensions, the Curl operator is only the rotated gradient and therefore

H1(Ω) equals the space of all L2(Ω) functions whose Curl is in L2(Ω). Let η ∈ H(div,Ω) be

given with −div η = f . The integration by parts and the substitutions σ := ∇w and τ := ∇v
show that (1.1) is equivalent to finding σ ∈ Z and φ ∈ Φ such that

a(φ, ψ) + λt−2(φ− σ, ψ − τ)L2(Ω) = (η, τ)L2(Ω) for all (τ, ψ) ∈ Z × Φ. (2.1)

While on the continuous level this is merely a reformulation of (1.1), discretizations based on

(2.1) turn out to benefit from an intrinsic discrete Helmholtz decomposition.


