
INTERNATIONAL JOURNAL OF c⃝ 2020 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 17, Number 2, Pages 254–280

A TIME-ACCURATE, ADAPTIVE DISCRETIZATION FOR

FLUID FLOW PROBLEMS

VICTOR DECARIA, WILLIAM LAYTON, AND HAIYUN ZHAO

Abstract. This report presents a low computational and cognitive complexity, stable, time
accurate and adaptive method for the Navier-Stokes equations. The improved method requires a
minimally intrusive modification to an existing program based on the fully implicit / backward
Euler time discretization, does not add to the computational complexity, and is conceptually

simple. The backward Euler approximation is simply post-processed with a two-step, linear time
filter. The time filter additionally removes the overdamping of Backward Euler while remaining
unconditionally energy stable, proven herein. Even for constant stepsizes, the method does not
reduce to a standard / named time stepping method but is related to a known 2-parameter family

of A-stable, two step, second order methods. Numerical tests confirm the predicted convergence
rates and the improved predictions of flow quantities such as drag and lift.

Key words. Navier-Stokes, backward Euler, time filter, time discretization, finite element

method.

1. Introduction

The backward Euler time discretization is often used for complex, viscous flows
due to its stability, rapid convergence to steady state solutions and simplicity to
implement. However, it has poor time transient flow accuracy, [17], and can fail
by overdamping a solution’s dynamic behavior. For ODEs, adding a time filter to
backward Euler, as in (1.3) below, yields two, embedded, A-stable approximations
of first and second order accuracy, [20]. This report develops this idea into an adap-
tive time-step and adaptive order method for time accurate fluid flow simulation
and gives an analysis of the resulting methods properties for constant time-steps.
For constant time-steps, the resulting Algorithm 1.1 below involves adding only
1 extra line to a backward Euler code. The added filter step increases accuracy
and adds negligible additional computational complexity, see Figure 1a and Figure
1b. Further, both time adaptivity and order adaptivity, presented in Section 2 and
tested in Section 6, are easily implemented in a constant time step backward Eu-
ler code with O(20) added lines. Thus, algorithms herein have two main features.
First, they can be implemented in a legacy code based on backward Euler without
modifying the legacy components. Second, both time step and method order can
easily be adapted due to the embedded structure of the method. The variable step,
variable order (VSVO) method is presented in Section 2 and tested in Section 6.2.

Even for constant time-steps and constant order, the method herein does not re-
duce to a standard / named method. Algorithm 1.1 with Option B is (for constant
order and time-step) equivalent to a member of the known, 2 parameter family of
second order, 2-step, A-stable one leg methods (OLMs), see Algorithm 3.2, Section
3. Stability and velocity convergence of the (constant time step) general second

Received by the editors January 24, 2019, and accepted September 2, 2019.
2000 Mathematics Subject Classification. 65M99, 76M10.

254



ADAPTIVE DISCRETIZATION FOR FLUID FLOW PROBLEMS 255

order, two-step, A-stable method for the Navier-Stokes equations was proven al-
ready in [15], see equation (3.20) p. 185, and has been elaborated thereafter, e.g.,
[23]. Our velocity stability and error analysis, while necessary for completeness,
parallels this previous work and is thus collected in Appendix A. On the other
hand, Algorithm 1.1 with Option A does not fit within a general theory even for
constant stepsize, and produces more accurate pressure approximations.

We begin by presenting the simplest, constant stepsize case to fix ideas. Consider
the time dependent incompressible Navier-Stokes (NS) equations:

(1)

ut + u · ∇u− ν∆u+∇p = f, and ∇ · u = 0 in Ω,

u = 0 on ∂Ω, and

∫
Ω

p dx = 0,

u(x, 0) = u0(x) in Ω.

Here, Ω ⊂ Rd(d=2,3) is a bounded polyhedral domain; u : Ω × [0, T ] → Rd is the
fluid velocity; p : Ω × (0, T ] → R is the fluid pressure. The body force f(x, t) is
known, and ν is the kinematic viscosity of the fluid.

Suppressing the spacial discretization, the method calculates an intermediate
velocity ûn+1 using the backward Euler / fully implicit method. Time filters (re-
quiring only two additional lines of code and not affecting the BE calculation) are
applied to produce un+1 and pn+1 follows:

Algorithm 1.1 (Constant △t BE plus time filter). With u∗ = ûn+1 (Implicit) or
u∗ = 2un − un−1 (Linearly-Implicit), Step 1: (Backward Euler)

(2)

ûn+1 − un

∆t
+ u∗ · ∇ûn+1 − ν∆ûn+1 +∇p̂n+1 = f(tn+1),

∇ · ûn+1 = 0,

Step 2: (Time Filter for velocity and pressure)

(3) un+1 = ûn+1 − 1

3
(ûn+1 − 2un + un−1)

Option A: (No pressure filter)

pn+1 = p̂n+1.

Option B:

pn+1 = p̂n+1 − 1

3
(p̂n+1 − 2pn + pn−1)

Algorithm 1.1A means Option A is used, and Algorithm 1.1B means Option B is
used.

Its implementation in a backward Euler code does not require additional function
evaluations or solves, only a minor increase in floating point operations. Figure 1a
presents a runtime comparison with and without the filter step. It is apparent that
the added computational complexity of Step 2 is negligible. However, adding the
time filter step has a profound impact on solution quality, see Figure 1b.

Herein, we give a velocity stability and error analysis for constant timestep in Ap-
pendix A. Since (eliminating the intermediate step) the constant time-step method
is equivalent to an A-stable, second order, two step method, its velocity analysis has
only minor deviations from the analysis in [15] and [23]. We also give an analysis
of the unfiltered pressure error, which does not have a parallel in [15] or [23]. The


