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3D B2 MODEL FOR RADIATIVE TRANSFER EQUATION

RUO LI AND WEIMING LI

Abstract. We proposed a 3D B2 model for the radiative transfer equation. The model is an

extension of the 1D B2 model for the slab geometry. The 1D B2 model is an approximation to the
2nd order maximum entropy (M2) closure and has been proved to be globally hyperbolic. In 3D

space, we are basically following the method for the slab geometry case to approximate the M2

closure by B2 ansatz. Same as the M2 closure, the ansatz of the new 3D B2 model has the capacity

to capture both isotropic solutions and strongly peaked solutions. And beyond the M2 closure, the

new model has fluxes in closed-form such that it is applicable to practical numerical simulations.
The rotational invariance, realizability, and hyperbolicity of the new model are carefully studied.
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1. Introduction

The radiative transfer equations describe the transportation of photons in a
medium [22, 20]. They are kinetic equations, and the unknown is the specific in-
tensity of photons. The specific intensity is a function of time, spatial coordinates,
frequency, and angular variables. There are numerous methods for solving the ra-
diative transfer equations [12, 5, 26, 8, 19]. The moment method is an efficient ap-
proach for reducing the computation cost brought about by the high-dimensionality
of variables of kinetic equations.

In most applications, the quantities of interest are the few lowest order moments.
Therefore moments are proper choices for discretizing the angular variables. In fact,
in many applications, people are only concerned with the zeroth order moment and
a diffusion equation is often solved to approximate the radiation process [29]. How-
ever, the diffusion equation might not be a very accurate approximation when the
radiation field is away from equilibrium, therefore more moments are sometimes
needed. An essential problem in the moment method is that moment systems are
not closed. Closing the system by specifying a constitutive relationship is known
as the moment-closure problem. One approach towards moment-closure is to re-
cover the angular dependence of the specific intensity from the known moments.
The reconstructed specific intensity is called an ansatz. Ideally, the ansatz should
be non-negative for all moments which can be generated by a non-negative dis-
tribution. Also, one would like the system to be hyperbolic since hyperbolicity
is necessary for the local well-posedness of Cauchy problem. Other natural re-
quirements include that the ansatz satisfies rotational invariance and reproduces
the isotropic distribution at equilibrium. Numerous forms of ansätze have been
studied in the literature. For detailed descriptions of standard methods we refer
to [22, 18]. Yet, in multi-dimensional cases, the maximum entropy method, re-
ferred to as the Mn model, is perhaps the only method known so far to have both
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realizability and global hyperbolicity [7]. However, the flux functions of the max-
imum entropy method are generally not explicit 1, so numerically computing such
models involve solving highly nonlinear and probably ill-conditioned optimization
problems frequently. There have been continuous efforts on speeding up the com-
putation process [2, 1, 10]. Recently, there are also attempts in deriving closed-form
approximations of the maximum entropy closure in order to avoid the expensive
computations. For 1D cases, an approximation to the Mn models using the Ker-
shaw closure is given in [23]. For multi-dimensional cases, a model based on directly
approximating the closure relations of the M1 and M2 methods is proposed in [21].
Our work in this paper also aims at constructing closed-form approximations of the
maximum entropy model. Like [21], we seek a closed-form approximation to the
M2 method in 3D. But unlike [21], we derive our model from an ansatz with some
similarity to that of the M2 model.

In a previous study [3], we analyzed the second order extended quadrature
method of moments (EQMOM) introduced in [27] which we call the B2 model.
In this work, we propose an approximation of the M2 model in 3D space by ex-
tending the B2 model studied in [3] to 3D. The reason for this approach is that the
B2 ansatz shares the following properties with the M2 ansatz:

(1) it interpolates smoothly between isotropic and strongly peaked distribution
functions;

(2) it captures anisotropy in opposite directions.

The B2 closure in [3] is for slab geometries. Preserving rotational invariance when
extending it to 3D space is non-trivial. We use the sum of the axisymmetric B2

ansätze in three mutually orthogonal directions as the ansatz for a second order
moment model in 3D space. This new model is referred to as the 3D B2 model. The
consistency of known moments requires the three mutually orthogonal directions to
be the three eigenvectors of the second-order moment matrix. We point out that
there are three free parameters in the ansatz of the 3D B2 model after the consis-
tency of known moments is fulfilled. These parameters are specified as functions
of the first-order moments and the eigenvalues of the second-order moment matrix.
We prove that the 3D B2 model is rotationally invariant. The region where the
model possesses a non-negative ansatz is illustrated, as well as the hyperbolicity
region of the model with vanished first-order moment. Though far from perfect, the
3D B2 model shares some important features of the M2 closure. Also, the model
has explicit flux functions, making it very convenient for numerical simulations.

The rest of this paper is organized as follows. In Section 2 we recall the basics
of moment models, and briefly, introduce the M2 method as well as the B2 model
for 1D slab geometry. In Section 3 we propose the 3D B2 model. In Section 4 we
analyze its properties. Finally, in Section 5 we summarize and discuss future work.

2. Preliminaries

The specific intensity I(t, r,ν,Ω) is governed by the radiative transfer equation

(1)
1

c

∂I

∂t
+Ω ⋅ ∇I = C(I),

where c is the speed of light. The variables in the equation are time t ∈ R+, the
spatial coordinates r = (x, y, z) ∈ R3, the angular variables Ω = (Ωx, Ωy, Ωz) ∈ S2,
and frequency ν ∈ R+. The right-hand side C(I) describes the interactions between

1With the first order maximum entropy model for the grey equations as the only exception [7].


