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THE PROPERTY OF THE BRANCH OF NONSINGULAR

FINITE ELEMENT/FINITE VOLUME SOLUTIONS TO THE

STATIONARY NAVIER-STOKES EQUATIONS AND ITS

APPLICATION

JIAN LI AND YINNIAN HE

Abstract. In this paper, a branch of nonsingular solutions of the stationary Navier-Stokes
equations are investigated, which are unique on a neighborhood, and mostly isolated without
relying on very stringent requirement on the small data. We summarize and develop an equivalent
definition of nonsingular solutions of finite element/finite volume methods in the same framework.
Furthermore, we establish the equivalent definition of a branch of singular solutions of finite
element methods for the coupled Navier-Stokes/Darcy equations.
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1. Introduction

The Navier-Stokes equations usually have more than one solution unless the da-
ta satisfy the stringent requirement of uniqueness condition of the solutions, which
required that the data be small enough in certain norms [17, 33]. However, this
uniqueness condition is rarely satisfied in the real world. In many practical exam-
ples, the solutions are mostly isolated, and depend continuously on the viscosity. As
the viscosity varies along an interval, each solution of the Navier-Stokes equation-
s describes an isolated branch, which means the bifurcation phenomenon is rare.
This situation is expressed mathematically by the notion of branches of nonsingular
solutions.

Finite element approximations of nonsingular solutions have been investigated in
[4, 17, 18], where optimal order error estimates have been obtained for the stationary
Navier-Stokes equations with large data. Also, an analysis of the nonsingular finite
volume solutions to the Navier-Stokes equations is not direct to establish where the
whole system lacks symmetry in the context of a petrov-Galerkin method [2, 6, 7,
8, 14, 15, 16, 19, 25, 34].

For both finite element/finite volume approximations of the stationary Navier-
Stokes equations, the original definition of nonsingular solutions is difficult to be
applied and developed for the further research in this field. Here, we apply the
definition of an isomorphism between two spaces to obtain the equivalent definition
of discrete nonsingular solutions to the stationary Navier-Stokes equations and its
coupled system.

This paper is organized as follows: In the next section, we introduce notations of
a branch of nonsingular solutions to the stationary Navier-Stokes equations. Then,
in the third section, the property of a branch of nonsingular finite element solu-
tions to the stationary Navier-Stokes equations is derived. Also, the corresponding
property of nonsingular finite volume solutions is investigated in the fourth sec-
tion. Finally, we investigate the property of a branch of nonsingular finite element
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solutions to the coupled Navier-Stokes/Darcy model with heterogeneous porous
medium.

2. A branch of nonsingular solutions to the stationary Navier-Stokes
equations

Let Ω be a bounded domain in ℜd, d = 2, 3, assumed that Γ is of C2 or if Ω is a
two-dimensional convex polygon. The stationary Navier-Stokes equations are

−∆u+ λ∇p = λf − λ((u · ∇)u+
1

2
(divu)u), in Ω,(1)

div u = 0, in Ω,(2)

u|Γ = 0, on Γ,(3)

where u = u(x) represents the velocity vector, p = p(x) the pressure, f = f(x) the
prescribed body force, λ = µ−1, and µ > 0 the viscosity.

For simplicity, some useful Sobolev spaces can be defined by:

X = [H1
0 (Ω)]

d, M = L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

qdx = 0

}

, Z = [L3/2(Ω)]d,

X̄ = X ×M, Y = [H−1(Ω)]d, V = {v ∈ X : div v = 0} ,

H =
{

v ∈ [L2(Ω)]d : div v = 0
}

, D(A) = [H2(Ω)]d ∩ V,

where the Stokes operator A : D(A)→H is defined by A = −P∆ and P : [L2(Ω)]d

→ H is the standard L2-orthogonal projection. The spaces [L2(Ω)]m, m = 1, 2,
or 4, are endowed with the L2-scalar product (·, ·) and the L2-norm ‖ · ‖L2 , as
appropriate. In addition, ‖ · ‖Lr , 1 ≤ r ≤ ∞, denotes the norm of the space Lr(Ω).
The space X is equipped with the usual scalar product (∇u,∇v) and the norm
‖u‖H1 (or equivalently ‖∇u‖L2), u, v ∈ X . In particular, define the norm on X̄:

|||(v, q)||| = (‖∇v‖2L2 + λ2‖q‖2L2)1/2, (v, q) ∈ X̄.

In this paper standard definitions are used for the Sobolev spacesWm,r(Ω) [1], with
the norm ‖ · ‖Wm,r and the seminorm | · |Wm,r , m, r ≥ 0. We will write Hm(Ω) for
Wm,2(Ω) and ‖ · ‖Hm for ‖ · ‖Wm,2(Ω).

First, we consider the linear Stokes equations in order to introduce some math-
ematical theory of the nonsingular solutions of the stationary Navier-Stokes equa-
tions. A linear operator T : Y → X̄ is defined as follows: Given g ∈ Y , the solution
of the Stokes problem

−∆v + λ∇q = g, in Ω,

div v = 0, in Ω,

v|Γ = 0, on Γ,(4)

is denoted by ṽ(λ) = (v, λq) = Tg ∈ X̄. Furthermore, a C2-mapping G : R+× X̄ →
Y is defined by

G(λ, ṽ(λ)) = λ

(

(v · ∇)v +
1

2
(div v)v − f

)

since the term divu = 0. Finally, we define

F (λ, ṽ(λ)) = ṽ(λ) + TG(λ, ṽ(λ)), λ ∈ R+, ṽ(λ) ∈ X̄.

In this section, a branch of nonsingular solutions of the stationary Navier-Stokes
equations, as introduced in [4, 17, 18, 22, 23], are studied.


