Weakly Disk-busting Curves in the Boundary of a Compression Body

Sun $\rm Meng^1$ and $\rm Liang \ Liang^{2,*}$

School of Mathematical Sciences, Heilongjiang University, Harbin, 150080)
 School of Mathematics, Liaoning Normal University, Dalian, Liaoning, 116029)

Communicated by Lei Feng-chun

Abstract: Let V be a nontrivial compression body which is not simple. An essential simple closed curve J in $\partial_+ V$ is called weakly disk-busting if $\partial_+ V - J$ has only one compressing disk up to isotopy. In this paper, we give an upper bound of the diameter of the image of boundaries of essential disks in V under any projection determined by a weakly disk-busting curve. Moreover, we give a sufficient condition for the handle additions to be boundary irreducible.

Key words: handle addition, curve complex, subsurface projection, weakly diskbusting

2010 MR subject classification: 57N10, 57M50
Document code: A
Article ID: 1674-5647(2018)02-0171-06
DOI: 10.13447/j.1674-5647.2018.02.09

1 Introduction

Let M be a compact and orientable 3-manifold and F a component of ∂M . For an essential simple closed curve J in F, let M_J be the manifold obtained by attaching a 2-handle to M along J and filling in the resulting possible 2-sphere with a 3-ball. Such an operation is called a handle addition to M along J. If ∂M_J is incompressible in M_J , we say that the handle addition (as well as, J) is ∂ -irreducible.

Przytycki^[1] first gave a sufficient condition for a handle addition to a handlebody to be ∂ -irreducible, Jaco^[2] then generalized it to obtain the well-known handle addition theorem. Since then many generalizations have been given (see [3]–[6]).

Received date: Sept. 22, 2017.

Foundation item: The NSF (11601209) of China, Research Foundation (201601239) for Doctor of Liaoning Province, Scientific Research Fund (L201683660) of Liaoning Provincial Education Department, Youth Foundation (LS2015L002) of Liaoning Normal University.

^{*} Corresponding author.

E-mail address: 13904801741@163.com (Sun M), liang_liang@aliyun.com (Liang L).

In [7], Masur and Minsky introduced the subsurface projection to study the structure of the curve complex. They showed the diameter of the image of a geodesic under the projection is bounded by a constant \mathcal{M} , and \mathcal{M} only depends on the genus of the surface. Li^[8], Masur and Schleimer^[9] independently gave an estimation of the diameter of the image of the essential disks in a compact boundary reducible 3-manifold under the projection.

Let V be a nontrivial compression body which is not simple. An essential simple closed curve J in $\partial_+ V$ is called weakly disk-busting if $\partial_+ V - J$ has only one compressing disk up to isotopy. In this paper, we give an upper bound of the diameter of the image of boundaries of essential disks in V under any projection determined by a weakly disk-busting curve. Moreover, we give a sufficient condition for the handle additions to be boundary irreducible, which can be seen as an extension of Theorem 2.2 of [4].

The article is organized as follows. In Section 2, we review some necessary preliminaries. In Section 3, we give the main results and proofs.

2 Preliminaries

Let M be a 3-manifold and F a properly embedded surface which is not a 2-sphere. F is called compressible if F is a disk parallel to the boundary of M or there exists a disk D such that $D \cap F = \partial D$ and ∂D is essential in F. In the second case, we call D a compressing disk for F.

Suppose that F is a compact orientable surface of genus at least 1. The curve complex of F, first introduced by Harvey^[10], is defined as follows: each vertex is the isotopy class of an essential simple closed curve in F and (k + 1) vertices determine a k-simplex if they can be realized by pairwise disjoint curves. When F is a torus or once-punctured torus, the curve complex of F, defined by Masur and Minsky^[7], is the complex whose vertices are isotopy classes of essential simple closed curves in F, and (k + 1) vertices determine a k-simplex if they can be realized by curves which mutually intersect in only one point. Denote the curve complex of F by C(F).

For any two vertices α , β in C(F), the distance between α and β , denoted by $d_{C(F)}(\alpha, \beta)$, is defined to be the minimal number of 1-simplices in all possible simplicial paths connecting α to β . The simplicial path realizes the distance between α and β is called a geodesic. Let A and B be any two sets of vertices in C(F). The diameter of A, denoted by $\operatorname{diam}_{C(F)}(A)$, is defined to be $\max\{d(x, y) \mid x, y \in A\}$. The distance between A and B, denoted by $d_{C(F)}(A, B)$, is defined to be $\min\{d(x, y) \mid x \in A, y \in B\}$.

Let F be a compact orientable surface of genus at least 1 with nonempty boundary. Denote the arc and curve complex of F by AC(F). Vertices of AC(F) are isotopy classes of essential arcs or curves in F and (k + 1) vertices determine a k-simplex if they can be represented by pairwise disjoint arcs or curves. The distance between two vertices α , β , denoted by $d_{AC(F)}(\alpha, \beta)$, is defined to be the minimal number of 1-simplices in a simplicial path jointing α to β over all such possible paths.

Let F' be a subsurface of F such that each component of $\partial F'$ is essential in F. By