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Abstract: A properly embedded essential planar surface P (not a disk) in a com-

pression body V is called a spanning pre-disk with respect to J , if one boundary

component of P is lying in ∂+V and all other boundary components of P are lying in

∂−V and coplanar with J . In this paper, we show that the number of boundary com-

ponents of spanning pre-disks in a compression body is unbounded. But the number

of a maximal collection of spanning pre-disks is bounded.
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1 Introduction

Let M be an orientable compact 3-manifold. A natural question is whether there exists a

properly embedded connected incompressible surface in M with genus g and b boundary

components for given g and b. Jaco[1] showed that the answer is positive when b equals

to 1 or 2 for the handlebody of genus 2 (therefore, for the handlebody of genus n ≥ 2).

The examples constructed by Jaco are non-separating in the handlebody. Examples of

such separating surfaces in a handlebody were given independently by Eudave-Muñoz[2],

Howards[3] and Qiu[4]. Nogueira and Segerman[5] gave a generalized description of such

surfaces in a handlebody with genus at least 2 or a 3-manifold with a compressible boundary

component with genus at least 2.

Another question is whether the number of components in a maximal collection of pair-
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wise disjoint, non-parallel, incompressible surfaces in a compact 3-manifold is bounded. The

Kneser-Haken Finiteness Theorem says that this is true if the surfaces are further assumed

to be ∂-incompressible (for a proof see [1] and [6]). The conclusion is not true if the assump-

tion of the ∂-incompressibility for the surfaces is removed. On the other hand, B. Freedman

and M. H. Freedman[7] showed that for a given compact 3-manifold if the Betti numbers of

surfaces are bounded, then the number of surfaces is bounded. Eudave-Muñoz and Shor[8]

showed that there is a bound of the number of surfaces depending on the Heegaard genus

of 3-manifold and the Betti numbers of surfaces. There are also other results about the

embedding of a maximal collection of essential annuli in a handlebody, see [9]–[11].

The pre-disk in a 3-manifold was first introduced by Jaco[12]. Let M be a 3-manifold,

and J an essential simple closed curve on a boundary component F . An essential planar

surface P properly embedded in M is called a pre-disk with respect to J if one boundary

component C of P is not coplanar with J , and all other boundary components of P are

coplanar with J in F . Jaco showed if ∂M − J is incompressible, then there is no properly

embedded pre-disk with respect to J in M . A handle addition theorem was given by Jaco

as an application of this result.

We consider spanning pre-disks in a compression body. Let V be a nontrivial compression

body with ∂−V ̸= ∅ and J an essential simple closed curve in ∂−V . A properly embedded

essential planar surface P (not a disk) in V is called a spanning pre-disk with respect to J ,

if one boundary component of P is lying in ∂+V and all other boundary components of P

are lying in ∂−V and coplanar with J .

Let V be a nontrivial compression body and F a component of ∂−V . Then we have the

following theorem:

Theorem 1.1 Let C be an essential simple closed curve in ∂−V and n a positive integer.

If there exists a non-separating essential disk in V or the component of ∂−V containing C

has genus at least 2, then there is a spanning pre-disk P with respect to C in V such that

|∂P | ≥ n.

Let C be a collection of mutually disjoint spanning pre-disks with respect to C in V . C is

called to be maximal if whenever P is a spanning pre-disk with respect to C with P ∩C = ∅,
then P is parallel to a component of C in V . Then we have the following theorem:

Theorem 1.2 Let V be a nontrivial compression body with ∂−V ̸= ∅ and C an essential

simple closed curve in ∂−V . If the collection C is maximal, then

|C | ≤ 3g(∂+V )− 3.

The article is organized as follows. In Section 2, we review some necessary preliminaries.

A key lemma is given in Section 3. The proofs of the main results are given in Section 4.

2 Preliminaries

Let V be a nontrivial compression body. A set D of disjoint essential disks in V is called

to be a minimal complete collection if V − D is homeomorphic to ∂−V × I. Assume that


