Normal Families of Holomorphic Functions Concerning Zero Numbers

Yang Qi
(School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)
Communicated by Ji You-qing

Abstract

In this paper, we study the normal families related with a Hayman conjecture of higher derivative concerning zero numbers, and get one normal criteria. Our result improve some earlier related result.

Key words: holomorphic function, shared value, normal criterion
2010 MR subject classification: 30D35, 30D45
Document code: A
Article ID: 1674-5647(2018)02-0097-09
DOI: 10.13447/j.1674-5647.2018.02.01

1 Introduction and Main Results

Let \mathcal{F} be a meromorphic function in \mathbf{C}, and D be a domain in $\mathbf{C} . \mathcal{F}$ is said to be normal in D if any sequence $\left\{f_{n}\right\} \subset \mathcal{F}$ contains a subsequence $f_{n_{j}}$ such that $f_{n_{j}}$ converges spherically locally uniformly in D, to a meromorphic function or ∞ (see [1]-[3]).

In 1959, Hayman ${ }^{[4]}$ proved the following result.
Theorem 1.1 Let f be a meromorphic function in $\mathbf{C}, n \geq 5$ be a positive integer, and $a(\neq 0), b$ be two finite constants. If $f^{\prime}-a f^{n} \neq b$, then f is a constant.

The following normality criterion corresponding to Hayman's result was proved by Drasin ${ }^{[5]}$ and $\mathrm{Ye}^{[6]}$.

Theorem 1.2 Let $n \geq 2$ be a positive integer, $a(\neq 0)$, b be two finite constants, and \mathcal{F} be a family of Holomorphic functions in a domain D. If for each $f \in \mathcal{F}, f^{\prime}-a f^{n} \neq b$, then \mathcal{F} is normal in D.

Recently, by the idea of concerning zero numbers, Deng et al. ${ }^{[7]}$ proved the following result.

[^0]Theorem 1.3 Let m, n, k be three positive integers satisfying $n \geq m+1, a(\neq 0), b$ be two finite constants, and \mathcal{F} be a family of Holomorphic functions in a domain D, all of whose zeros have multiplicity at least k. If for each function $f \in \mathcal{F}, f^{(k)}-a f^{n}-b$ has at most $m k$ distinct zeros in D, then \mathcal{F} is normal in D.

A natural problem arises: what can we say if $f^{(k)}$ in Theorem 1.3 is replaced by the $\left(f^{(k)}\right)^{d}$? In this paper, we prove the following result.

Theorem 1.4 Let m, n, k, d be four positive integers satisfying $n \geq(m+1) d, a(\neq 0), b$ be two finite constants, and \mathcal{F} be a family of holomorphic functions in a domain D, all of whose zeros have multiplicity at least k. If for each function $f \in \mathcal{F},\left(f^{(k)}\right)^{d}-a f^{n}-b$ has at most mdk distinct zeros in D, then \mathcal{F} is normal in D.

Example 1.1 Let n, k, d be three positive integers, a be a nonzero finite constant, and $\mathcal{F}=\left\{f_{j}=j z^{k-1}: j=1,2,3, \cdots\right\}, D=\{z:|z|<1\}$. Then, for each $f \in \mathcal{F},\left(f^{(k)}\right)^{d}-a f^{n}-0$ has just one distinct zero in D, but \mathcal{F} is not normal in D. This shows that the zeros of function $f \in \mathcal{F}$ have multiplicity at least k is necessary in Theorem 1.4.

Example 1.2 Let n, k, d be three positive integers, a be a nonzero finite constant, and $\mathcal{F}=\left\{f_{j}=j z^{k}: j=1,2,3, \cdots\right\}, D=\{z:|z|<1\}$. Then, for each $f \in \mathcal{F},\left(f^{(k)}\right)^{d}-$ $a f^{(m+1) d-1}-0$ has exactly $[(m+1) d-1] k \geq m d k$ distinct zero in D, and $\left(f^{(k)}\right)^{d}-a f^{(m+1) d}-0$ has exactly $(m+1) d k \geq m d k+1$, but \mathcal{F} is not normal in D. This shows that both $n \geq(m+1) d$ and $\left(f^{(k)}\right)^{d}-a f^{n}-b$ have at most $m d k$ distinct zeros in Theorem 1.4 are best possible.

2 Some Lemmas

In order to prove our theorems, we require the following results.
Lemma 2.1 ${ }^{[8]}$ Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ satisfying all zeros of functions in \mathcal{F} have multiplicity $\geq p$ and all poles of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-p<\alpha<q$. Then \mathcal{F} is not normal at a point z_{0} if and only if there exist
(i) points $z_{n} \in \Delta, z_{n} \rightarrow z_{0}$;
(ii) positive numbers $\rho_{n}, \rho_{n} \rightarrow 0$;
(iii) functions $f_{n} \in \mathcal{F}$
such that $\rho_{n}^{\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g(\zeta)$ spherically uniformly on each compact subset of \mathbf{C}, where $g(\zeta)$ is a nonconstant meromorphic function satisfying the zeros of g are of multiplicities $\geq p$ and the poles of g are of multiplicities $\geq q$. Moreover, the order of g is at most 2 . If g is holomorphic, then g is of exponential type and the order of g is at most 1 .

Lemma 2.2 ${ }^{[9]}$ Let f be a nonconstant meromorphic (entire) function in the complex plane, $a(\neq 0)$ be a finite constant, and n be a positive integer with $n \geq 4(n \geq 2)$. Then $f^{\prime}-a f^{n}$ has at least two distinct zeros.

[^0]: Received date: Oct. 25, 2016.
 Foundation item: The NSF (2016D01A059) of Xinjiang.
 E-mail address: yangqi_8138@126.com (Yang Q).

