Normal Families of Holomorphic Functions Concerning Zero Numbers

Yang Qi

(School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)

Communicated by Ji You-qing

Abstract: In this paper, we study the normal families related with a Hayman conjecture of higher derivative concerning zero numbers, and get one normal criteria. Our result improve some earlier related result. Key words: holomorphic function, shared value, normal criterion 2010 MR subject classification: 30D35, 30D45 Document code: A Article ID: 1674-5647(2018)02-0097-09 DOI: 10.13447/j.1674-5647.2018.02.01

1 Introduction and Main Results

Let \mathcal{F} be a meromorphic function in \mathbb{C} , and D be a domain in \mathbb{C} . \mathcal{F} is said to be normal in D if any sequence $\{f_n\} \subset \mathcal{F}$ contains a subsequence f_{n_j} such that f_{n_j} converges spherically locally uniformly in D, to a meromorphic function or ∞ (see [1]–[3]).

In 1959, Hayman^[4] proved the following result.

Theorem 1.1 Let f be a meromorphic function in \mathbf{C} , $n \ge 5$ be a positive integer, and $a \ne 0$, b be two finite constants. If $f' - af^n \ne b$, then f is a constant.

The following normality criterion corresponding to Hayman's result was proved by $Drasin^{[5]}$ and $Ye^{[6]}$.

Theorem 1.2 Let $n \ge 2$ be a positive integer, $a \ne 0$, b be two finite constants, and \mathcal{F} be a family of Holomorphic functions in a domain D. If for each $f \in \mathcal{F}$, $f' - af^n \ne b$, then \mathcal{F} is normal in D.

Recently, by the idea of concerning zero numbers, Deng *et al.*^[7] proved the following result.

Received date: Oct. 25, 2016.

Foundation item: The NSF (2016D01A059) of Xinjiang.

E-mail address: yangqi_8138@126.com (Yang Q).

Theorem 1.3 Let m, n, k be three positive integers satisfying $n \ge m+1$, $a \ne 0$, b be two finite constants, and \mathcal{F} be a family of Holomorphic functions in a domain D, all of whose zeros have multiplicity at least k. If for each function $f \in \mathcal{F}$, $f^{(k)} - af^n - b$ has at most mkdistinct zeros in D, then \mathcal{F} is normal in D.

A natural problem arises: what can we say if $f^{(k)}$ in Theorem 1.3 is replaced by the $(f^{(k)})^d$? In this paper, we prove the following result.

Theorem 1.4 Let m, n, k, d be four positive integers satisfying $n \ge (m+1)d$, $a(\ne 0)$, b be two finite constants, and \mathcal{F} be a family of holomorphic functions in a domain D, all of whose zeros have multiplicity at least k. If for each function $f \in \mathcal{F}$, $(f^{(k)})^d - af^n - b$ has at most mdk distinct zeros in D, then \mathcal{F} is normal in D.

Example 1.1 Let n, k, d be three positive integers, a be a nonzero finite constant, and $\mathcal{F} = \{f_j = jz^{k-1} : j = 1, 2, 3, \cdots\}, D = \{z : |z| < 1\}$. Then, for each $f \in \mathcal{F}, (f^{(k)})^d - af^n - 0$ has just one distinct zero in D, but \mathcal{F} is not normal in D. This shows that the zeros of function $f \in \mathcal{F}$ have multiplicity at least k is necessary in Theorem 1.4.

Example 1.2 Let n, k, d be three positive integers, a be a nonzero finite constant, and $\mathcal{F}=\{f_j = jz^k : j = 1, 2, 3, \cdots\}, D = \{z : |z| < 1\}$. Then, for each $f \in \mathcal{F}, (f^{(k)})^d - af^{(m+1)d-1} - 0$ has exactly $[(m+1)d-1]k \ge mdk$ distinct zero in D, and $(f^{(k)})^d - af^{(m+1)d} - 0$ has exactly $(m+1)dk \ge mdk + 1$, but \mathcal{F} is not normal in D. This shows that both $n \ge (m+1)d$ and $(f^{(k)})^d - af^n - b$ have at most mdk distinct zeros in Theorem 1.4 are best possible.

2 Some Lemmas

In order to prove our theorems, we require the following results.

Lemma 2.1^[8] Let \mathcal{F} be a family of meromorphic functions on the unit disc Δ satisfying all zeros of functions in \mathcal{F} have multiplicity $\geq p$ and all poles of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-p < \alpha < q$. Then \mathcal{F} is not normal at a point z_0 if and only if there exist

- (i) points $z_n \in \Delta$, $z_n \to z_0$;
- (ii) positive numbers ρ_n , $\rho_n \to 0$;
- (iii) functions $f_n \in \mathcal{F}$

such that $\rho_n^{\alpha} f_n(z_n + \rho_n \zeta) \to g(\zeta)$ spherically uniformly on each compact subset of \mathbf{C} , where $g(\zeta)$ is a nonconstant meromorphic function satisfying the zeros of g are of multiplicities $\geq p$ and the poles of g are of multiplicities $\geq q$. Moreover, the order of g is at most 2. If g is holomorphic, then g is of exponential type and the order of g is at most 1.

Lemma 2.2^[9] Let f be a nonconstant meromorphic (entire) function in the complex plane, $a(\neq 0)$ be a finite constant, and n be a positive integer with $n \ge 4$ ($n \ge 2$). Then $f' - af^n$ has at least two distinct zeros.