O-convexity of Orlicz-Bochner Spaces with Orlicz Norm

ZHOU CHENG-HUA, GONG WAN-ZHONG^{*} AND ZHANG DAO-XIANG (Department of Mathematics, Anhui Normal University, Wuhu, Anhui, 241000)

Communicated by Ji You-qing

Abstract: In this paper we give some characterizations of O-convexity of Banach spaces, and show the criteria for O-convexity in Orlicz-Bochner function space $L_M(\mu, X)$ and Orlicz-Bochner sequence space $l_M(X_s)$ endowed with Orlicz norm. Moreover, we give a sufficient condition for the dual of such a space to have the fixed point property.

Key words: O-convexity, Orlicz norm, Orlicz-Bochner sequence space, Orlicz-Bochner function space

2010 MR subject classification: 46B20 Document code: A Article ID: 1674-5647(2018)03-0261-17 DOI: 10.13447/j.1674-5647.2018.03.08

1 Introduction

It is well known that convexities and reflexivity play an important role in Banach space theory. Since B-convexity (write (BC)) was introduced by Beck^[1], some revelent properties including uniform non-squareness (write (U-NS)) and P-convexity (write (PC)) were given by Brown^[2], Giesy^[3], James^[4] and Kottman^[5]. From their achievements we know that

(UC) or (US)
$$\Rightarrow$$
 (U-NS) \Rightarrow (Rfx) and (BC),
(UC) or (US) \Rightarrow (PC) \Rightarrow (Rfx) and (BC),

where (UC) denotes uniform convexity, (US) uniform smoothness, and (Rfx) reflexivity. A natural and interesting question raised by Brown^[6]: "Is there a B-convex space that is not P-convex?" Though Giesy^[7] and James^[8] provided answer to the above question, Naidu and Sastry^[9] introduced a new geometric conception in a Banach space X named O-convexity (write (OC)): if there exists an $\varepsilon > 0$ and an $n_0 \in \mathbf{N}^+$ such that for every

Received date: Aug. 29, 2017.

Foundation item: The NSF (11771273, 11302002) of China.

^{*} Corresponding author.

E-mail address: 1521612638@qq.com (Zhou C H), gongwanzhong@shu.edu.cn (Gong W Z).

 $x^{(1)}, x^{(2)}, \dots, x^{(n_0)} \in S(X)$ there holds

$$\inf\{\|x^{(i)} - x^{(j)}\|, \|x^{(i)} + x^{(j)}\|: i, j \le n_0, i \ne j\} \le 2(1 - \varepsilon).$$

In [9], the authors showed

m

(U-NS) or (PC) \Rightarrow (OC) \Rightarrow (S-Rfx) \Rightarrow (BC),

where (S-Rfx) denotes super-reflexivity. They also proved that $X \bigoplus Y$ normed by $||(x, y)|| = (||x||^p + ||y||^p)^{\frac{1}{p}}$ is O-convex whenever X and Y are O-convex for $1 \le p < \infty$. In recent years, many works indicate that O-convexity is closely related to the fixed point property (see [10] and [11]).

For Orlicz-Bochner function space $L_M(\mu, X)$ or Orlicz-Bochner sequence space $l_M(X_s)$ with Orlicz norm, a fundamental question is that whether or not a geometrical property lifts from X to $L_M(\mu, X)$, or X_s to $l_M(X_s)$. The answer may often be guessed, but usually, the result exceed the guess and the proof is nontrivial. Various kinds of convexity for Lebesgue-Bochner space $L_p(\mu, X)$, Orlicz-Bochner function space $L_M(\mu, X)$ and Orlicz-Bochner sequence space $l_M(X_s)$ were carried out by many authors (see [12]–[17], etc).

In this paper, a characterization of O-convexity of $L_M(\mu, X)$ or $l_M(X_s)$ endowed with Orlicz norm is given. As a corollary of the main result we get that for 1 , the equi- $O-convexity of <math>\{X_s\}$ implies the O-convexity of $l_p(X_s)$, and the O-convexity of X implies the O-convexity of $L_p(\mu, X)$. Moreover, we show that the dual space of $L_M(\mu, X)$ (or $l_M(X_s)$) has the fixed point property whenever L_M and X are O-convex (or l_M and X_s are equi-O-convex).

Let $(X_s, \|\cdot\|_s)$ be Banach spaces and $S(X_s)$ be the unit sphere of the space X_s . Let \mathbf{N}^+ , \mathbf{R} and \mathbf{R}^+ denote the set of positive natural numbers, reals and positive reals, respectively. A function M is called an Orlicz function if $M : \mathbf{R} \to \mathbf{R}^+$ is even, convex, M(u) = 0 if and only if u = 0, $\lim_{u \to 0} u^{-1}M(u) = 0$ and $\lim_{u \to \infty} u^{-1}M(u) = \infty$. Define a modular of $x = \{x(s)\}_{s=1}^{\infty}$

(where every $x(s) \in X_s$) by $\rho_M(x) = \sum_{i=1}^{\infty} M(||x(s)||_s)$. By Orlicz-Bochner sequence space $l_M(X_s)$ we mean the linear space

$$I_M(X_s) = \{ x = (x(1), x(2), \cdots) : \rho_M(\lambda x) < \infty \text{ for some } \lambda > 0 \}$$

equipped with Orlicz norm

$$||x||_M = \inf_{k>0} \frac{1}{k} [1 + \rho_M(kx)].$$

Suppose that (Ω, Σ, μ) is a non-atomic Lebesgue measure space. For an X-valued measurable function u(t), we call $\rho_M(u) = \int_{\Omega} M(||u(t)||) d\mu$ the modular of u. Similarly as above we have the Orlicz-Bochner function space

$$L_M(\mu, X) = \{ x = x(t) \colon \rho_M(\lambda x) < \infty \text{ for some } \lambda > 0 \}$$

endowed with Orlicz norm.

In this paper, L_M means $L_M(\mu, \mathbf{R})$, and so for l_M . For every Orlicz function M we define its complementary function $N: \mathbf{R} \to [0, \infty)$ by the formula

$$N(v) = \sup_{u>0} \{ u|v| - M(u) \}, \qquad v \in \mathbf{R}.$$