On the Reducibility of a Class of Linear Almost Periodic Differential Equations

AFZAL MUHAMMAD AND GUO SHU-ZHENG*

(School of Mathematical Sciences, Ocean University of China, Qingdao, Shandong, 266100)

Communicated by Li Yong

Abstract: In this paper, we use KAM methods to prove that there are positive measure Cantor sets such that for small perturbation parameters in these Cantor sets a class of almost periodic linear differential equations are reducible. Key words: almost periodic, reducibility, KAM iteration 2010 MR subject classification: 37C10, 70H08 Document code: A Article ID: 1674-5647(2019)01-0001-09 DOI: 10.13447/j.1674-5647.2019.01.01

1 Introduction and the Main Result

This paper considers the reducibility of the following system

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \left[\boldsymbol{A} + \varepsilon \boldsymbol{Q}(t)\right] \boldsymbol{x},\tag{1.1}$$

where \boldsymbol{A} is an $r \times r$ constant matrix, $\boldsymbol{Q}(t)$ is an $r \times r$ almost periodic matrix with respect to t, and ε is a small perturbation parameter.

We say that a function f is a quasiperiodic function of time t with basic frequencies $\boldsymbol{\omega} = (\omega_1, \omega_2, \cdots, \omega_d)$, if $f(t) = F(\theta_1, \theta_2, \cdots, \theta_d)$, where F is 2π periodic in all its arguments and $\theta_n = \omega_n t$ for $n = 1, 2, \cdots, d$. f is called analytic quasiperiodic in a strip of width ρ if F is analytical on

$$D_{\rho} = \{ \boldsymbol{\theta} \mid |\Im \theta_m| \le \rho, \ m = 1, 2, \cdots, r \}.$$

In this case we denote the norm by

$$||f||_{\rho} = \sum_{k \in \mathbf{Z}^d} |F_k| \mathrm{e}^{\rho|k|}.$$

A function f is almost periodic, if $f(t) = \sum_{n=1}^{\infty} f_n(t)$, where $f_n(t)$ are all quasiperiodic for $n = 1, 2, \cdots$.

Received date: Nov. 15, 2017.

Foundation item: The NSF (11571327) of China and NSF (ZR2013AM026) of Shandong Province.

^{*} Corresponding author.

E-mail address: mafzalmughul700@yahoo.com (Afzal M), guoshuzheng@stu.ouc.edu.cn (Guo S Z).

A change of variables $\boldsymbol{x} = \boldsymbol{P}(t)\boldsymbol{y}$ is a Lyapunov-Perron (LP) transform if \boldsymbol{P} is nonsingular, and $\boldsymbol{P}, \boldsymbol{P}^{-1}$ and $\dot{\boldsymbol{P}}$ are bounded. Moreover, if $\boldsymbol{P}, \boldsymbol{P}^{-1}$ and $\dot{\boldsymbol{P}}$ are almost periodic, the change $\boldsymbol{x} = \boldsymbol{P}(t)\boldsymbol{y}$ is called almost periodic LP transformation. If there is an almost periodic LP transformation changing the equation (1.1) into $\boldsymbol{y} = \boldsymbol{B}\boldsymbol{y}$, the equation (1.1) is called reducible.

If $\mathbf{Q} = (q_{mn})$ is periodic the reducibility in all cases is given by the classical Floquet theory. If $\mathbf{Q} = (q_{mn})$ is quasiperiodic and the eigenvalues of \mathbf{A} are all different, Jorba-Simó^[1] proved that if the eigenvalues of \mathbf{A} and the frequencies of $\mathbf{Q} = (q_{mn})$ satisfy some nonresonant conditions and non-degeneracy conditions, there is a positive measure Cantor set Esuch that for $\varepsilon \in E$ the equation (1.1) is reducible. Xu^[2] proved the similar result when $\mathbf{Q} = (q_{mn})$ is quasiperiodic and the eigenvalues of \mathbf{A} are multiple. If $\mathbf{Q} = (q_{mn})$ is almost periodic, the reducible problem seems difficult to study. The difficulty comes from the description of related "non-resonant condition" for the infinitely many frequencies. Xu and You^[3], under the " spacial structure" described in [4] and some non-resonant conditions, obtained reducible result for (1.1) by KAM method when the eigenvalues of \mathbf{A} are all different. In this paper, we are going to study the reducibility for the system (1.1) when $\mathbf{Q} = (q_{mn})$ is almost periodic and the eigenvalues of \mathbf{A} are multiple.

Now let us introduce the "space structure" and "approximation function" and some related definitions.

Definition 1.1^[4] Let τ consist of the subsets of natural numbers set **N**. $(\tau, [\cdot])$ is called finite spacial structure in **N**, if τ satisfies

- (1) $\emptyset \in \tau;$
- (2) if Λ_1 , $\Lambda_2 \in \tau$, then $[\Lambda_1 \cup \Lambda_2] \leq [\tau]$;

(3)
$$\bigcup_{\Lambda \in \tau} \Lambda = \mathbf{N}$$

And $[\cdot]^{\Lambda \in \mathcal{I}}$ is a weight function, i.e., $[\emptyset] = 0$, $[\Lambda_1 \cup \Lambda_2] \leq [\Lambda_1] + [\Lambda_2]$.

Definition 1.2 Let $k \in \mathbb{Z}^{\mathbb{N}}$. Denote the support set of k by

 $\operatorname{supp} \boldsymbol{k} = \{ (n_1, n_2, \cdots, n_l) \mid k_m \neq 0, \ m = n_1, n_2, \cdots, n_l, \ k_m = 0, \ m = other \ number \}.$ Denote the weight value by

$$[\mathbf{k}] = \inf_{\mathrm{supp}\mathbf{k}\subset \Lambda, \Lambda\in \tau} [\Lambda].$$

Write $|\mathbf{k}| = \sum_{i=1}^{\infty} |k_i|$.

Assume that $Q(t) = (q_{mn}(t))$ is a quasiperiodic $r \times r$ matrix. If for all $m, n = 1, 2, \dots, r$, $q_{mn}(t)$ are analytic on

$$D_{\rho} = \{ \boldsymbol{\theta} \mid |\Im \theta_m| \le \rho, \ m = 1, 2, \cdots, r \},\$$

then Q(t) is called analytic on the strip D_{ρ} . Denote the norm by

$$\| \boldsymbol{Q}(t) \|_{\rho} = r \times \max_{1 \le m, n \le r} \| q_{mn}(t) \|_{\rho}.$$

If $\boldsymbol{Q}(t) = \sum_{\Lambda \in \tau} \boldsymbol{Q}_{\Lambda}(t)$, where $\boldsymbol{Q}_{\Lambda}(t)$ are quasiperiodic matrices with basic frequencies $\boldsymbol{\omega}_{\Lambda} = \{\omega_i \mid i \in \Lambda\}$, then $\boldsymbol{Q}(t)$ is called almost periodic matrix with spatial structure $(\tau, [\cdot])$ and