The Value Distribution and Normality Criteria of a Class of Meromorphic Functions

Yang Qi
(School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)
Communicated by Ji You-qing

Abstract

In this article, we use Zalcman Lemma to investigate the normal family of meromorphic functions concerning shared values, which improves some earlier related results.

Key words: meromorphic function, shared value, normal criterion
2010 MR subject classification: 30D35, 30D45
Document code: A
Article ID: 1674-5647(2017)01-0053-11
DOI: 10.13447/j.1674-5647.2017.01.06

1 Introduction and Main Results

Let D be a domain of the open complex plane $\mathbf{C}, f(z)$ and $g(z)$ be two nonconstant meromorphic functions defined in D, a be a finite complex value. We say that f and g share a CM (or IM) in D provided that $f-a$ and $g-a$ have the same zeros counting (or ignoring) multiplicity in D. When $a=\infty$, the zeros of $f-a$ means the poles of f (see [1]). It is assumed that the reader is familiar with the standard notations and the basic results of Nevanlinna's value-distribution theory (see [2]-[4]).

It is also interesting to find normality criteria from the point of view of shared values. In this area, Schwick ${ }^{[5]}$ first proved an interesting result that a family of meromorphic functions in a domain is normal if in which every function shares three distinct finite complex numbers with its first derivative. And later, more results about shared values' normality criteria related a Hayma conjecture of higher derivative have emerged (see [6]-[13]).

Lately, Chen ${ }^{[14]}$ proved the following theorems.
Theorem 1.1 Let D be a domain in \mathbf{C} and let \mathcal{F} be a family of meromorphic functions in D. Let $k, n, d \in \mathbf{N}_{+}, n \geq 3, d \geq \frac{k+1}{n-2}$ and a, b be two finite complex numbers with

[^0]$a \neq 0$. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least k and all its poles of multiplicity at least d. If $f^{(k)}-a f^{n}$ and $g^{(k)}-a g^{n}$ share the value b IM for every pair of functions (f, g) of \mathcal{F}, then \mathcal{F} is a normal family in D.

Theorem 1.2 Let D be a domain in \mathbf{C} and let \mathcal{F} be a family of meromorphic functions in D. Let $k \in \mathbf{N}_{+}$and a, b be two finite complex numbers with $a \neq 0$. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least $k+1$ and all its poles of multiplicity at least $k+2$. If $f^{(k)}-a f^{2}$ and $g^{(k)}-a g^{2}$ share the value b IM for every pair of functions (f, g) of \mathcal{F}, then \mathcal{F} is a normal family in D.

A natural problem arises: what can we say if $f^{(k)}-a f^{n}$ in Theorem 1.1 is replaced by the $\left(f^{(k)}\right)^{m}-a f^{n}$? In this paper, we prove the following results.

Theorem 1.3 Let D be a domain in \mathbf{C} and let \mathcal{F} be a family of meromorphic functions in D. Let $k, n, m, d \in \mathbf{N}_{+}, n \geq m+2, d \geq \frac{m k+1}{n-m-1}$ and a, be two finite complex numbers with $a \neq 0$. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least $k+1$ and all its poles of multiplicity at least d. If $\left(f^{(k)}\right)^{m}-a f^{n}$ and $\left(g^{(k)}\right)^{m}-a g^{n}$ share the value b IM for every pair of functions (f, g) of \mathcal{F}, then \mathcal{F} is a normal family in D.

Theorem 1.4 Let D be a domain in \mathbf{C} and let \mathcal{F} be a family of meromorphic functions in D. Let $k, m \in \mathbf{N}_{+}$and a, b be two finite complex numbers with $a \neq 0$. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least $k+1$ and all its poles of multiplicity at least $m k+2$. If $\left(f^{(k)}\right)^{m}-a f^{m+1}$ and $\left(g^{(k)}\right)^{m}-a g^{m+1}$ share the value b IM for every pair of functions (f, g) of \mathcal{F}, then \mathcal{F} is a normal family in D.

2 Some Lemmas

Lemma 2.1 ${ }^{[15]}$ Let \mathcal{F} be a family of meromorphic functions on the unit disc satisfying all zeros of functions in \mathcal{F} have multiplicity $\geq p$ and all poles of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-q<\alpha<p$. Then \mathcal{F} is not normal at 0 if and only if there exist
a) a number $0<r<1$;
b) points z_{n} with $\left|z_{n}\right|<r$;
c) functions $f_{n} \in \mathcal{F}$;
d) positive numbers $\rho_{n} \rightarrow 0$
such that $g_{n}(\zeta):=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)$ converges spherically uniformly on each compact subset of \mathbf{C} to a non-constant meromorphic function $g(\zeta)$, whose all zeros have multiplicity $\geq p$ and all poles have multiplicity $\geq q$ and order is at most 2 .

Lemma 2.2 Let $f(z)$ be a meromorphic function such that $f^{(k)}(z) \not \equiv 0$ and $a \in \mathbf{C} \backslash\{0\}$, $k, m, n, d \in \mathbf{N}_{+}$with $n \geq m+2, d \geq \frac{k m+1}{n-m-1}$. If all zeros of f are of multiplicity at least

[^0]: Received date: Oct. 29, 2015.
 Foundation item: The NSF (2016D01A059) of Xinjiang.
 E-mail address: yangqi_8138@126.com (Yang Q).

