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Abstract. This paper presents a Martingale regularization method for the stochas-
tic Navier–Stokes equations with additive noise. The original system is split into
two equivalent parts, the linear stochastic Stokes equations with Martingale solution
and the stochastic modified Navier–Stokes equations with relatively-higher regular-
ities. Meanwhile, a fractional Laplace operator is introduced to regularize the noise
term. The stability and convergence of numerical scheme for the pathwise modified
Navier–Stokes equations are proved. The comparisons of non-regularized and reg-
ularized noises for the Navier–Stokes system are numerically presented to further
demonstrate the efficiency of our numerical scheme.
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1. Introduction

In this paper, a Martingale regularization method is proposed to improve the com-
putational efficiency and accuracy of the stochastic Navier–Stokes equations (SNSEs)
with additive noise,

du− ν∆udt+ (u · ∇)udt+∇pdt = f dt+ σ(t)∆θ dW in (0, T ]×D × Ω,

∇ · u = 0 in [0, T ]×D × Ω,

u = 0 on [0, T ]× ∂D × Ω,

u = u0 on D × Ω,
(1.1)
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where [0, T ] denotes a time interval of interest; D ∈ Rd, d = 2, 3 a space domain
with Lipschitz boundary; Ω a sample space of all the possible outcomes; ν the viscosity
parameter; u = (u1, · · · , ud) : [0, T ]×D×Ω→ Rd the velocity field; p : [0, T ]×D×Ω→
R the corresponding pressure field; f : [0, T ] × D × Ω → Rd a random forcing term;
σ(t) : [0, T ] → R a scalar function; and u0 : D × Ω → Rd an initial condition. The
notation ∆θ := (−∆)−θ denotes a fractional Laplace operator with θ ∈ R+ [16] and
W = (W1, · · · ,Wd) : [0, T ] × D × Ω → Rd denotes an infinite-dimensional Wiener
process. Further, assume that Wl, l = 1, · · · , d are Wiener processes with bounded, self-
adjoint, positive semidefinite covariance operator Q which has eigenvalues {γl > 0}
and eigenfunctions {el(x)}. Then from [3], the Wiener process W can be characterized
by

W(t, x, ω) =

∞∑
l=1

γ
1/2
l el(x)βl(t, ω), (1.2)

where βl(t, ω) = (βl1, · · · , βld) is a sequence of real-valued independent and identically
distributed (i.i.d) standard Brownian motions. In this paper, the trace tr Q =

∑∞
l=1 γl

is not required to be finite. The infinite case can be incorporated with some feasible
regularization parameter θ of the fractional Laplace operator.

The crucial part of the Martingale regularization method for (1.1) is having in hand
previous knowledge of an auxiliary stochastic process associated with the stochastic
Stokes equations

dη − ν∆η dt+∇ζ dt = σ(t)∆θ dW in (0, T ]×D × Ω,

∇ · η = 0 in [0, T ]×D × Ω,

η = 0 on [0, T ]× ∂D × Ω,

η = η0 on D × Ω,

(1.3)

where η : [0, T ] ×D × Ω → Rd is the corresponding auxiliary velocity and ζ : [0, T ] ×
D × Ω → R is the corresponding pressure. Theoretically, the stochastic Stokes equa-
tions (1.3) are somehow relevant to the divergence free projection of one stochastic
parabolic equations. Moreover, the solution of Eqs. (1.3) with time-space white noise
in two dimension or higher has less regularities, e.g., η(t) 6∈ L2

P(Ω,H1(D)) [3]. The
fractional Laplace operator ∆θ is given here to regularize the noise term dW so as
to make the pathwise solution of (1.3) smoother and more amenable to computation.
Therefore, system (1.1) with a cylindrical Wiener process or a greatly non-smoother
Wiener process can be covered. Setting u = ξ + η, p = ζ + π, the induced velocity ξ
and pressure π satisfy the modified Navier–Stokes equations

dξ − ν∆ξ dt+ (ξ + η) · ∇(ξ + η) dt+∇π dt = f dt in (0, T ]×D × Ω,

∇ · ξ = 0 in [0, T ]×D × Ω,

ξ = 0 on [0, T ]× ∂D × Ω,

ξ = ξ0 on D × Ω.

(1.4)


