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Abstract. This paper develops the high-order accurate entropy stable finite difference
schemes for one- and two-dimensional special relativistic hydrodynamic equations.
The schemes are built on the entropy conservative flux and the weighted essentially
non-oscillatory (WENO) technique as well as explicit Runge-Kutta time discretiza-
tion. The key is to technically construct the affordable entropy conservative flux of
the semi-discrete second-order accurate entropy conservative schemes satisfying the
semi-discrete entropy equality for the found convex entropy pair. As soon as the en-
tropy conservative flux is derived, the dissipation term can be added to give the semi-
discrete entropy stable schemes satisfying the semi-discrete entropy inequality with
the given convex entropy function. The WENO reconstruction for the scaled entropy
variables and the high-order explicit Runge-Kutta time discretization are implemented
to obtain the fully-discrete high-order entropy stable schemes. Several numerical tests
are conducted to validate the accuracy and the ability to capture discontinuities of our
entropy stable schemes.
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1 Introduction

This paper is concerned with the high-order accurate numerical schemes for the one-
and two-dimensional special relativistic hydrodynamic (RHD) equations, which in the
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laboratory frame, can be cast in the divergence form

∂U
∂t

+
d

∑
`=1

∂F`(U)

∂x`
=0, (1.1)

where U and F` are respectively the conservative vector and the flux vector in the x`-
direction and defined by

U =(D,m1,··· ,md,E)T, (1.2a)

F`=(Du`,m1u`+pδ1,`,··· ,mdu`+pδd,`,m`)
T, `=1,··· ,d, (1.2b)

with the mass density D= ρW, the momentum density m=(m1,··· ,md)
T = DhWu, and

the energy density E = DhW−p. Here, d = 1 or 2, ρ, p and u = (u1,··· ,ud)
T denote the

rest-mass density, the kinetic pressure, and the fluid velocity, respectively. Moreover,

W =1/
√

1−(u2
1+···+u2

d) is the Lorentz factor and h is the specific enthalpy defined by
h = 1+e+p/ρ with units in which the speed of light is equal to one, and the specific
internal energy e. The system (1.1)-(1.2) should be closed by using the equation of state
(EOS). This paper will only consider the ideal-fluid EOS

p=(Γ−1)ρe

with the adiabatic index Γ∈(1,2]. Because there is no explicit expression for the primitive
variables (ρ,uT,p) and the flux F` in terms of U, in order to recover the values of the
primitive variables and the flux from the given U, a nonlinear algebraic equation such as

E+p=DW+
Γ

Γ−1
pW2

has to be numerically solved to obtain the pressure p, and then the rest-mass density ρ,
the specific enthalpy h, and the velocity u can be orderly calculated by

ρ=
D
W

, h=1+
Γp

(Γ−1)ρ
, u=

m
Dh

.

The relativistic description for the dynamics of the fluid (gas) at nearly the speed of light
should be considered when we investigate the astrophysical phenomena from stellar
to galactic scales, e.g., coalescing neutron stars, core collapse supernovae, active galac-
tic nuclei, superluminal jets, the formation of black holes, and gamma-ray bursts etc.
Due to the relativistic effect, the nonlinearity of the system (1.1)-(1.2) becomes much
stronger than the non-relativistic case so that its analytic treatment is extremely diffi-
cult and challenging. Numerical simulation is a primary way to help us understand
the physical mechanisms in the RHD. It can be traced back to the artificial viscosity
method for the RHD equations in the Lagrangian coordinates [29, 30] and in the Eule-
rian coordinates [40]. After those, the modern shock-captured methods for the RHD


