Monomial Derivations without Darboux Polynomials

Li Jian-tao
(School of Mathematics, Liaoning University, Shenyang, 110036)
Communicated by Du Xian-kun

Abstract

In this paper, it is proved that a monomial derivation d of $k[x, y, z]$ has no Darboux polynomials if and only if d is a strict derivation with a trivial ring of constants, and we give the specific conditions when it has no Darboux polynomials.

Key words: derivation, monomial derivation, Darboux polynomial, ring of constants 2010 MR subject classification: 13N15, 12H05
Document code: A
Article ID: 1674-5647(2017)02-0185-08
DOI: 10.13447/j.1674-5647.2017.02.10

1 Introduction

Throughout this paper, let $k[X]=k\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ denote the polynomial ring over a field k of characteristic 0 .

A derivation $d=f_{1} \frac{\partial}{\partial x_{1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}$ of $k[X]$ is said to be a monomial derivation if each f_{i} is a monomial in $k[X]$. By a Darboux polynomial of d we mean a polynomial $F \in k[X]$ such that $F \notin k$ and $d(F)=\Lambda F$ for some $\Lambda \in k[X]$, and the polynomial Λ is called a cofactor of the Darboux polynomial F. The aim of this paper is to describe monomial derivations of $k[x, y, z]$ without Darboux polynomials.

Derivations and Darboux polynomials are useful algebraic methods to study the polynomial or the rational differential systems. If we associate a polynomial differential system

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x_{i}=f_{i}, \quad i=1,2, \cdots, n
$$

with a derivation

$$
d=f_{1} \frac{\partial}{\partial x_{1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}
$$

then the existence of the Darboux polynomials is a necessary condition for the system to have a first integral (see [1]-[3]). It is of interest to know whether Darboux polynomials exist

[^0]for any derivation of $k[X]$. However, in general, this problem is very difficult. In $k\left[x_{1}, x_{2}\right]$, d is a derivation without Darboux polynomials if and only if d is a simple derivation, and only some sporadic examples of derivations without Darboux polynomials are known (see [4]-[6]). For $n \geq 3$, the most famous example of derivations without Darboux polynomials is the Jouanolou derivation defined by $d(x)=y^{s}, d(y)=z^{s}$ and $d(z)=x^{s}, s \geq 2$ (see [7]-[9]).

If a derivation d has no Darboux polynomials, then the ring of constants of d, denoted by $k[X]^{d}$, must be trivial, that is, $k[X]^{d}=k$. In 2006, Nowicki and Zieliński ${ }^{[10]}$ gave a full description of all monomial derivations of the rational function field $k(X)$ with trivial field of constants in two or three variables. They also proved that a generalized Jouanolou derivation

$$
d=y^{p} \frac{\partial}{\partial x}+z^{q} \frac{\partial}{\partial y}+x^{r} \frac{\partial}{\partial z}, \quad p, q, r \in \mathbf{Z},
$$

has a trivial field of constants if and only if $p q r \geq 2$. In 2008, Moulin Ollagnier and Nowicki ${ }^{[11]}$ presented several new examples of homogeneous monomial derivations without Darboux polynomials of $k[x, y, z]$, in which case

$$
d=f_{1} \frac{\partial}{\partial x}+f_{2} \frac{\partial}{\partial y}+f_{3} \frac{\partial}{\partial z},
$$

and f_{1}, f_{2} and f_{3} are homogeneous monomials of the same degree $s \leq 4$. In 2011, Moulin Ollagnier and Nowicki ${ }^{[12]}$ proved that a strict monomial derivation d of $k[x, y, z]$ has no Darboux polynomials if and only if $k(x, y, z)^{d}=k$.

In this paper, we show that a monomial derivation d of $k[x, y, z]$ has no Darboux polynomials if and only if d is strict and has a trivial ring of constants, that is, $k[x, y, z]^{d}=k$. It should be noted that the condition $k[x, y, z]^{d}=k$ cannot imply $k(x, y, z)^{d}=k$. Even if a derivation d has a trivial ring of constants in $k[x, y, z]$, it may also exists a nonconstant rational function f such that $d(f)=0$. So the result in [12] mentioned above cannot imply our theorem. Moreover, we give the specific conditions when it has no Darboux polynomials, that is, d has no Darboux polynomials if and only if

$$
d=y^{\beta_{12}} z^{\beta_{13}} \frac{\partial}{\partial x}+x^{\beta_{21}} z^{\beta_{23}} \frac{\partial}{\partial y}+x^{\beta_{31}} y^{\beta_{32}} \frac{\partial}{\partial z},
$$

where the non-negative integers $\beta_{i j}$ satisfy neither of the following conditions:

1. $\beta_{12}=\beta_{32}$ or $\beta_{13}=\beta_{23}$ or $\beta_{21}=\beta_{31}$.
2. $\frac{\beta_{31}+1}{\beta_{21}+1}=\frac{\beta_{12}+1}{\beta_{32}+1}=\frac{\beta_{23}+1}{\beta_{13}+1}=2$ or $\frac{\beta_{21}+1}{\beta_{31}+1}=\frac{\beta_{32}+1}{\beta_{12}+1}=\frac{\beta_{13}+1}{\beta_{23}+1}=2$.

2 Notations and Preliminaries

In this section, we fix notations and collect some basic facts; see [10] and [13] for details.
A nonzero sequence $\gamma=\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ of integers is called a direction. For $\boldsymbol{a}=\left(a_{1}, \cdots\right.$, $\left.a_{n}\right) \in \mathbf{N}^{n}$, write $X^{\boldsymbol{a}}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ and $\gamma \boldsymbol{a}=\gamma_{1} a_{1}+\cdots+\gamma_{n} a_{n}$. A nonzero polynomial $f \in k[X]$ is said to be γ-homogeneous of degree $s(s \in \mathbf{Z})$ if $f=\sum_{\gamma a=s} k_{a} X^{a}$, where $k_{a} \in k$. The zero polynomial is seen as a γ-homogeneous polynomial of an arbitrary degree. A

[^0]: Received date: Dec. 30, 2016.
 Foundation item: The NSF (11526104) of China, and the Youth Research Funds (LDGY2015001) from Liaoning University.

 E-mail address: jtlimath@qq.com (Li J T).

