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Abstract. In this paper, a new numerical scheme for the time dependent Ginzburg-
Landau (GL) equations under the Lorentz gauge is proposed. We first rewrite the
original GL equations into a new mixed formulation, which consists of three parabolic
equations for the order parameter ¢, the magnetic field o = curlA, the electric poten-
tial 0 =divA and a vector ordinary differential equation for the magnetic potential A,
respectively. Then, an efficient fully linearized backward Euler finite element method
(FEM) is proposed for the mixed GL system, where conventional Lagrange element
method is used in spatial discretization. The new approach offers many advantages
on both accuracy and efficiency over existing methods for the GL equations under
the Lorentz gauge. Three physical variables 1, ¢ and 6 can be solved accurately and
directly. More importantly, the new approach is well suitable for non-convex super-
conductors. We present a set of numerical examples to confirm these advantages.
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1 Introduction

This paper is concerned with efficient numerical methods for the time-dependent Ginzburg-
Landau (GL) equations
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with the following boundary and initial conditions

<%V1/J+A1/J> n=0, curlAxn=H,Xn, on 90} x [0,T], (1.3)

P(x,0)=to(x), A(x,0)=A0(x), in Q, (14)

where () is a bounded domain in IR3. In the GL equations (1.1)-(1.4), the complex scalar
function 1 is the order parameter, the real vector-valued function A is the magnetic po-
tential, and the real scalar function & is the electric potential. * denotes the complex
conjugate of the function . Physically, ||*> denotes the density of the superconducting
electron pairs. |¢|> =1 and |¢|*> =0 represent the perfectly superconducting state and
the normal state, respectively, while 0 < ||?> < 1 represents a mixed (vortex) state. The
real vector-valued function H, is the external magnetic field, x (positive) is the Ginzburg-
Landau parameter and # (positive) is a dimensionless constant. In the rest of this paper,
we set 17 =1 for the sake of simplicity.

We refer to [3,11] for the detailed description of the Ginzburg-Landau model in super-
conductivity. Theoretical analyses of the GL equations have been well done, see [3,8,20]
and references therein. Numerical methods for solving the GL equations have also been
investigated extensively; see [1,6,7,10,13-21,23-29]. It is well-known that the GL equa-
tions admit the gauge invariance property, see [11,12]. Two popular gauges are the tem-
poral gauge and the Lorentz gauge. Under the temporal gauge, the GL equations are
defined by
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As fewer terms are involved, the GL equations under the temporal gauge looks simpler.
We refer to [10,16,18,24,25,27,28] for the numerical methods for the GL equations under
the temporal gauge. However, it should be noted that Eq. (1.6) for A is a degenerate
parabolic equation, where ||curlA||;2 is not equivalent to |A|;1. Due to this degeneracy,
in [10,23] an extra perturbation term —eVdivA was added to Eq. (1.6) for A. Therefore,
the results obtained in [10,24] depend on the parameter €. By taking & = —divA, the GL
equations under the Lorentz gauge can be written as
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