
INTERNATIONAL JOURNAL OF c⃝ 2019 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 16, Number 5, Pages 745–766

ANISOTROPIC MESH ADAPTATION METHOD BASED ON

ANISOTROPIC BUBBLE-TYPE LOCAL MESH GENERATION

WEI GUO, YUFENG NIE AND WEIWEI ZHANG∗

Abstract. A new anisotropic adaptive mesh refinement method based on anisotropic bubble-
type local mesh generation (ABLMG) for elliptic partial differential equations is proposed. The
anisotropic meshes are generated as quasi-uniform meshes in metric spaces with the metric de-
termined on each vertex by anisotropic a posteriori error estimator. Under the new metric, the

error is equidistributed in the directions of maximum and minimum stretching on an element,
and the mesh size is reduced/coarsend in regions with large/small errors. With the full use of the
adjacent lists provided by the node placement method, the local mesh for each vertex is generated
through ABLMG method. Compared with other methods, the mesh refining and coarsening can

be obtained in the same framework and the mesh suits the metric well at each refinement level.
Numerical results in two-dimensions are presented to verify the ability of our metric tensor to
generate anisotropic mesh with correct concentration and stretching direction.
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1. Introduction

The advantage of anisotropic adaptive mesh refinement method has been amply
demonstrated for improving computational efficiency and enhancing the solution
accuracy, especially for the problems with anisotropic features. Through adapting
the mesh size, shape and orientation, the mesh can be refined both in regions
and directions with large errors. The use of anisotropic mesh refinement method
involves several key factors: error estimates, determination of metric tensor and
anisotropic mesh generation. Beginning with the pioneering work of D’Azevedo[7]
and Simpson[27], these techniques have been developed by many researchers[24, 3,
5, 9, 12, 18].

Deriving an efficient and reliable a posteriori error estimator is a difficult task
on highly anisotropic mesh. Two requirements must be satisfied for anisotropic
error estimators. The error estimator must perform well on anisotropic meshes
and should provide the directional information to refine the mesh with large errors.
Unfortunately, the classical isotropic a posteriori error estimators can’t suit the re-
quirements. For isotropic error estimator, the effectivity index of estimator depends
on the mesh aspect ratio which is unbounded for anisotropic mesh. Since the early
nineties of last century, many anisotropic a posteriori error estimators have been
proposed, for example, the hierarchical a posteriori error estimator[15], the dual
weighted residual estimator[11], local problem estimates[2] and so on. In order to
specify the refinement direction most of the present error estimators make use of
the gradient or Hessian matrix of the solution which are unavailable in numerical
computation. To avoid the difficulty, the information of the solution is approximat-
ed by the recovery technique such as the Zienkiewicz-Zhu post-processing[34, 35].
It is worth pointing out that although no convergence can be certified in anisotropic
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mesh, numerical results show that the information obtained from recovery technique
can be used to guide refinement and coarsening for anisotropic adaptive mesh re-
finement.

Obtaining the metric from a posteriori error estimator to guide the mesh gener-
ation is important for anisotropic mesh generation. Different from isotropic mesh
refinement where only the mesh size need to be optimized, for anisotropic mesh
refinement method the shape and orientation also need to be optimized. Al-
l of them are described by the metric tensor, determined by error estimates. A
number of strategies have been developed to deduce metric tensors. The met-
ric tensors are commonly defined as the Hessian matrix of the solution proposed
by D’Azevedo[7]. Based on error estimates for polynomial preserving interpola-
tion estimation, Huang[14] developed a general formula for the metric tensor. For
the anisotropic elliptic problems Huang et al.[16] verified that high-accuracy finite
element solution and superconvergence on the mesh vertices can be obtained by
utilizing the inverse of the anisotropic diffusion matrix as the metric tensor for
anisotropic mesh generation.

For high-quality anisotropic adaptive mesh generation, three basic approaches
exist to achieve mesh refinement: mesh smoothing, anisotropic re-meshing and mesh
splitting[24]. For mesh smoothing method, the nodes are relocated at each refine-
ment level to minimize the error estimates. For example, Schneider and Jimack[25]
introduced a new anisotropic mesh adaptation strategy in order to modify the
node positions of a given (isotropic) mesh such that the a posteriori error esti-
mate is minimized. However how to choose the initial mesh vertex number for the
mesh smoothing method is still an open problem. Mesh splitting is a canonical
way to refine the mesh for isotropic adaptive mesh refinement method. Whereas
the strong anisotropic mesh can’t be obtained no matter which kind of splitting
strategies are used (the longest edge bisection method or the newest vertex bisec-
tion method), since splitting methods limit the aspect ratio for anisotropic mesh.
Many researchers[28] show that the anisotropy of the mesh can be increased by
pre-defined refinement patterns. Anisotropic re-meshing method requires generat-
ing new anisotropic mesh at each refinement level. The mesh with high quality
and strong anisotropy can be arrived in fewer steps. For instance the anisotropic
centroidal Voronoi tessellation (ACVT) have been developed by Du and Wang[10]
for two dimensional anisotropic mesh generation and optimization. There are also
a number of computer codes including BL2D[19], BAMG[13], and MMG3D[8] for
generating anisotropic meshes which lead to a large number of publications.

In this paper, the focus is on the anisotropic adaptive mesh refinement method
based on anisotropic bubble-type local mesh generation (ABLMG) method. The
ABLMG-based adaptive mesh generation method proposed in this paper is an
anisotropic re-meshing method. Initially, Shimada et al. [26] proposed the bubble
packing method (BPM) based on the fact that the force-balance configuration of
bubbles forms a well designed node set. The BPM can be used to generate the
anisotropic mesh such as the parametric surface mesh [32] and polygonal surface
mesh [29], in which the circle bubbles are replaced by ellipse bubbles. In order
to avoid using mesh topology, a pure node placement method by bubble simula-
tion (NPBS) was proposed by Liu et al.[20] in which the adjacent list structure is
set up to reduce the time of calculating interaction forces. For the node set with
high quality generated by NPBS, a fast bubble-type local mesh generation method
(BLMG) is presented in [6] and the anisotropic version (ABLMG) is presented in


