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POSTPROCESSING OF CONTINUOUS GALERKIN SOLUTIONS

FOR DELAY DIFFERENTIAL EQUATIONS WITH NONLINEAR

VANISHING DELAY

QIUMEI HUANG, KUN JIANG AND XIUXIU XU

Abstract. In this paper we propose several postprocessing techniques to accelerate the conver-

gence of the continuous Galerkin solutions for delay differential equations with nonlinear vanish-
ing delay. They are interpolation postprocessings (including integration type, Lagrange type, and

polynomial preserving recovery type) and iteration postprocessing. The theoretical expectations

are confirmed by numerical experiments.
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1. Introduction

Delay differential equations (DDEs) have a wide range of application in science
and engineering. The nonlinear vanishing delay equation is an important type of
delay differential equation and has received considerable attention in both theoret-
ical analysis and numerical computation since the early 1970s (cf. [14, 15, 10]).
Runge-Kutta and collocation methods are two popular numerical methods used to
solve this kind functional differential equation, which can be found in the mono-
graphs by Bellen and Zennaro [1] and Brunner [3], the survey paper [2], and the
recent papers [4, 6, 22, 27], etc..

Finite element methods (FEMs) are efficient numerical methods that extensively
used in solving partial differential equations and integral equations. FEMs have
also been introduced to solve ordinary differential equations (ODEs) and delay
differential equations. See, for example, [8, 9, 20, 21] for ODEs, [7, 16] for DDEs
with constant delay, [5, 13] for DDEs with proportional delay, and [26] for Volterra
functional integro-differential equations with vanishing delays.

Superconvergence and supercloseness are two hot topics in FEMs. If the errors
of numerical solutions U at some points are far less than the global error, we call
this phenomenon as superconvergence and the points are called superconvergence
points. If the distance between the numerical solution U and some interpolant Πu
of the exact solution u is far less than that between the numerical solution U and
the exact solution u, that is, ‖U − Πu‖ � ‖u − U‖, we call this phenomenon as
supercloseness. Based on the superconvergence and supercloseness, one can put
postprocessing techniques onto the numerical solution U and get a new approxi-
mation U∗ of higher order convergence. There are several popular postprocessing
techniques. In the early stages, Sloan iteration was proposed in [23, 24] to improve
the convergence of solutions of integral equations. Zienkiewice and Zhu [28, 29]
mentioned the postprocessing method of superconvergence patch recovery which
leads to global superconvergence of the new approximate solution U∗ for partial
differential equations (PDEs). The polynomial preserving recovery postprocessing
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method was proposed in [19, 30]. By combining the two adjacent elements and
constructing higher order interpolation for one dimensional case (or combining al-
l adjacent elements in high dimensional space), the interpolation postprocessing
method ([17, 18]) was proposed to accelerate the numerical solutions.

The superconvergent points of CG and DG solutions are Lobatto [7, 13] and
Radau II points [16, 12] respectively for DDEs of constant delay and proportional
delay. For DDEs of pantograph type, Huang et al. [12] used two types of post-
processing techniques to improve the global convergence of DG solutions. They
[25] obtained all the superconvergent points of CG solutions according to the su-
percloseness between the CG solution U and the interpolation Πhu of the exact
solution under uniform mesh and analyzed the optimal global convergence and lo-
cal superconvergence of continuous Galerkin solutions for pantograph DDEs under
quasi-geometric meshes (more general quasi-graded case).

As a sequel to papers [13, 25], we consider in this paper the delay differential
equation with nonlinear vanishing delay,

u′(t) = a(t)u(t) + b(t)u(θ(t)) + f(t), t ∈ J = [0, T ],

u(0) = u0.
(1)

The delay item θ satisfies the conditions: (i) θ(0) = 0 and θ(t) < t for t > 0, (ii)

min
t∈J

θ
′
(t) =: q0 > 0. We study the superconvergence properties of the “postpro-

cessed” CG solutions obtained by postprocessing for DDE (1). It will be shown
that the convergence order of the CG solutions can be improved considerably by
several postprocessing methods.

The outline of this paper is as follows. In section 2 we review the CG method for
(1) and introduce the convergence results of the CG solutions. In section 3, we il-
lustrate the supercloseness between the CG solution U and a suitable interpolation
Πu of the exact solution u and locate all the superconvergent points (subsection
3.1). Then we present two kinds of interpolation postprocessing methods, which
respectively based on the supercloseness and the superconvergence points (subsec-
tions 3.2 & 3.3 ). In subsection 3.4, we present a type of postprocessing method
using integral iteration to accelerate the convergence order of the CG solutions.
In order to obtain higher order of convergence, in section 4, we propose another
interpolation postprocessing method based on the superconvergence properties of
the nodal points. Finally, we display numerical results to illustrate our theoretical
analysis in section 5.

2. The CG method and convergence analysis

In this section, we introduce the CG method for DDE (1) with quasi-graded
meshes and the global convergence properties of the CG solution.

2.1. The CG method. We assume that the given functions a, b and f in (1) are
continuous on J = [0, T ]. Suppose that on a small initial subinterval J0 = [0, t0] (
t0 = θk(T ), k ∈ N), for a suitable value of k, the approximation φ(t) of the exact
solution u is known. φ(t) can be obtained by the CG method or by the truncation
of Taylor expansion of the exact solution u(t). We then solve the following equation

u′(t) = a(t)u(t) + b(t)u(θ(t)) + f(t), t0 ≤ t ≤ T,

u(t) = φ(t), θ(t0) ≤ t ≤ t0.
(2)


