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Abstract. In this paper, we consider an elliptic equation with exponential nonlineari-
ties and singular term. By constructing the corresponding variational framework, and
using a Singular Trudinger-Moser inequality due to Li, Mountain-pass theorem and
the Ekeland’s variational principle, we get a nontrivial positive weak solution.
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1 Introduction and main results

Motivated by Adimurthi and Yang [1], Yang [2], in this paper, we concerned the elliptic
differential equation
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where x € RN,N >2 is an integer, V(x) € C(RV,R) denotes all continuous functions from
RNtoR, p>N,0<B<N, f(x,u) has exponential growth like ™Y ag |u| — o0 and
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Vo will be determined later. More details can be founded in [3-7].
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Let E be the function space defined by
E= {u € wlfN(]RN):/ NV(x)|u|Ndx<oo}.
R

For convenience, we define a function {:IN xR — R
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In the following, We list conditions on V(x) and f(x,s) in order to obtain our results.

(Hy) V(x)>Vy>0in RN for some Vj >0;
(Ha) s €L (RY);
2 V(x) ’

(H3) There exist positive real constants «ag,a1,a; such that

|f(x,8)| <aisN 1 asl (N,acos%), V(x,5) eRN xRY;
(Hy) There exist u > N such that
S
0<uF(x,s) Ey/ fx,t)dt<sf(x,s);
0

(Hs) There exist positive real constants R, My such that

F(x,s) <Myf(x,s), VxeRN,s> Ry.

According to [2], we assume throughout this paper
f(x,8)=0, V(x,5) €RN x (—e0,0). (1.4)
It follows from (H;) that E is a reflexive Banach space endowed the norm

1
N

sl =, (T8 V)=l ) (1.5
Now, we define a singular eigenvalue of the N-Laplace operator, for VO< <N
e,
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