Notes on New Error Bounds for Linear Complementarity Problems of Nekrasov Matrices, B-Nekrasov Matrices and $Q N$-Matrices

Ping-Fan Dai ${ }^{1,2}$, Jicheng $\mathrm{Li}^{1, *}$, Jianchao Bai^{3} and Liqiang Dong ${ }^{1}$
${ }^{1}$ School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shanaxi, 710049, China
${ }^{2}$ School of Information Engineering, Sanming University, Sanming, Fujian, 365004, China
${ }^{3}$ Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China

Received 15 February 2018; Accepted (in revised version) 29 November 2018

Abstract

In this paper, we give new error bounds for linear complementarity problems when the matrices involved are Nekrasov matrices, B-Nekrasov matrices and $Q N$-matrices, respectively. It is proved that the obtained bounds are better than those of Li et al. (New error bounds for linear complementarity problems of Nekrasov matrices and B-Nekrasov matrices, Numer. Algor., 74 (2017), pp. 997-1009) and Gao et al. (New error bounds for linear complementarity problems of $Q N$-matrices, Numer. Algor., 77 (2018), pp. 229-242) in some cases, respectively.

AMS subject classifications: 65G50, 90C31, 90C33
Key words: Error bounds, linear complementarity problem, Nekrasov matrices, B-Nekrasov matrices, QN-matrices.

1. Introduction

The linear complementarity problem is to find a vector $x \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
x \geq 0, \quad A x+q \geq 0, \quad(A x+q)^{T} x=0 \tag{1.1}
\end{equation*}
$$

or to show that no such vector x exists, where $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^{n}$. We abbreviate this problem by $\operatorname{LCP}(A, q)$. Many problems can be posed in the form (1.1). For instance, problems in linear and quadratic programming, the problem of finding a Nash equilibrium point of a bimatrix game or some free boundary problems of fluid mechanics (see [1-3,29-32]). It is well known that a real square matrix A is called

[^0]a P-matrix if all its principal minors are positive. A is a P-matrix if and only if the $\operatorname{LCP}(A, q)$ has a unique solution x^{*} for any $q \in R^{n}$ (see [2]).

Some error bounds for LCPs of P-matrices are derived (see [4-7]). Particularly, when the matrix A of the $\operatorname{LCP}(A, q)(1.1)$ is a P-matrix, Chen and Xiang [4] derived the following error bound

$$
\left\|x-x^{*}\right\|_{\infty} \leq \max _{d \in[0,1]^{n}}\left\|(I-D+D A)^{-1}\right\|_{\infty}\|r(x)\|_{\infty}
$$

where x^{*} is the solution of $\operatorname{LCP}(A, q), r(x):=\min (x, A x+q), D=\operatorname{diag}\left(d_{i}\right)$ with $0 \leq$ $d_{i} \leq 1$, and the min operator denotes the componentwise minimum of two vectors.

When the involved matrix belongs to a subclass of P-matrices, such as H-matrices with positive diagonals, B-matrices, $D B$-matrices, $S B$-matrices, $M B$-matrices, $B^{S_{-}}$ matrices and weakly chained diagonally dominant B-matrices, many error bounds for the LCPs (1.1) are achieved in the literature (see [8-17, 21-24, 27-28]). In [15,16], error bounds for linear complementarity problem with Nekrasov matrices and B-Nekrasov matrices are presented respectively. Recently, Li et al. [21] provided new error bounds for LCPs (A, q) associated with Nekrasov matrices and B-Nekrasov matrices and Gao et al. [23] presented a new error bound for $\operatorname{LCP}(A, q)$ involved with a $Q N$-matrix, which are only dependent on the entries of the matrix A.

In this paper, we find new error bounds of linear complementarity problem when the involved matrices are Nekrasov matrices, B-Nekrasov matrices and and $Q N$ matrices. It is proved that the given bounds improve corresponding bounds of [21], for Nekrasov matrices and B-Nekrasov matrices, and [23], for $Q N$-matrice in some cases. In particular, when the positive diagonal entries of the related matrix A are located in an interval $(0,1]$, it is proved that the new bound is generally sharper than that of Remark 2.4 in [9]. Related numerical examples show that the new bounds are tighter than those derived recently.

2. A new error bound for LCPs of Nekrasov matrices

Let us first introduce some basic notations and some classes of matrices. We denote $N:=\{1, \cdots, n\}$ and by $e:=(1, \cdots, 1)^{T}$ the unit column vector of n elements. A Z matrix is a matrix whose off-diagonal elements are nonpositive and a nonsingular M matrix is a Z-matrix with nonnegative inverse. Given a real matrix A, its comparison matrix $\langle A\rangle=\left(\tilde{a}_{i j}\right) \in \mathbb{R}^{n \times n}$ defined by setting $\tilde{a}_{i i}=\left|a_{i i}\right|$ and $\tilde{a}_{i j}=-\left|a_{i j}\right|, i \neq j, i, j \in N$. If $\langle A\rangle$ is an M-matrix, then A is called an H-matrix. we say that a matrix $A=\left(a_{i j}\right) \in$ $\mathbb{R}^{n \times n}$ is strictly diagonally dominant by rows $(S D D)$ if $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for all $i, j \in N$.

In what follows, we recall the definition of Nekrasov matrices [18-19] and prepare several fundamental lemmas.

Definition 2.1. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}, n \geq 2$, with $a_{i i} \neq 0, i \in N$. We say that A is a Nekrasov matrix if, for all $i \in N$,

$$
\left|a_{i i}\right|>h_{i}(A),
$$

[^0]: ${ }^{*}$ Corresponding author. Email addresses: daipf20040163.com (P. F. Dai), jcli@mail.xjtu.edu.cn (J. Li)

