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Abstract. This paper develops and analyses numerical approximation for linear-quadratic
optimal control problems governed by elliptic interface equations. We adopt variational
discretization concept to discretize optimal control problems, and apply an interface-
unfitted finite element method due to [A. Hansbo and P. Hansbo. An unfitted finite
element method, based on Nitsche’s method, for elliptic interface problems. Comput.
Methods Appl. Mech. Engrg., 191(47-48): 5537-5552, 2002] to discretize the corre-
sponding state and adjoint equations, where piecewise cut basis functions around in-
terface are enriched into standard conforming finite element space. Optimal error esti-
mates in both L2 norm and a mesh-dependent norm are derived for the optimal state,
co-state and control under different regularity assumptions. Numerical results verify the
theoretical results.
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1. Introduction

Many optimization processes in science and engineering lead to optimal control prob-
lems governed by partial differential equations (PDEs). In particular in some practical
problems, such as the multi-physics progress or engineering design with different materi-
als, the corresponding controlled systems are described by elliptic equations with interface,
whose coefficients are discontinuous across the interface.

Let us consider the following linear-quadratic optimal control problem governed by
elliptic interface equations:

min J(y, u) :=
1
2

∫

Ω

(y − yd)
2 d x +

α

2

∫

Γ

u2 ds (1.1)
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Figure 1: The geometry of an interface problem: an illustration.

for (y, u) ∈ H1
0(Ω)× L2(Γ ) subject to the elliptic interface problem







−∇ · (a(x)∇y) = f in Ω,
y = 0 on ∂Ω,
[y] = 0, [a∇n y] = g + u on Γ

(1.2)

with the control constraint
ua ≤ u≤ ub, a.e. on Γ . (1.3)

Here Ω ⊆ Rd(d = 2, 3) is a polygonal or polyhedral domain, consisting of two disjoint
subdomains Ωi(1 ≤ i ≤ 2), and interface Γ = ∂Ω1 ∩ ∂Ω2; see Fig. 1 for an illustration.
yd ∈ L2(Ω) is the desired state to be achieved by controlling u through interface Γ , and α
is a positive constant. a(·) is piecewise constant with

a|Ωi
= ai > 0, i = 1, 2.

[y] := (y|Ω1
)|Γ − (y|Ω2

)|Γ is the jump of function y across interface Γ , ∇n y = n · ∇y is the
normal derivative of y with n denoting the unit outward normal vector along ∂Ω1 ∩ Γ ,

f ∈ L2(Ω), g ∈ H1/2(Γ ) and ua, ub ∈ H1/2(Γ ) with ua ≤ ub a.e. on Γ . (1.4)

The choice of homogeneous boundary condition on boundary ∂Ω is made for ease of pre-
sentation, since similar results are valid for other boundary conditions.

For the elliptic interface problem, the global regularity of its solution is often low due
to the discontinuity of coefficient a(·). The low global regularity may result in reduced
accuracy for its finite element approximations [1, 55], especially when the interface has
complicated geometrical structure [29, 40]. Generally there have two categories in the
literature to tackle this difficulty, i.e. interface(or body)-fitted methods [2,7,11,15,16,28,
33, 46, 56, 59] and interface-unfitted methods. For the interface-fitted methods, meshes
aligned with the interface are used so as to dominate the approximation error caused by
the non-smoothness of solution. In practice, it is usually difficult to construct such meshes,
especially in three-dimensional problems.

In contrast, the interface-unfitted methods, with certain types of modifications for ap-
proximating functions around interface, do not require the meshes to fit the interface, and
thus avoid complicated mesh generation. For some representative interface-unfitted meth-
ods, we refer to the extended/generalized finite element method [5, 42–44, 51], where


