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Abstract

This paper deals with numerical stability properties of super-linear stochastic differen-

tial equations with unbounded delay. Sufficient conditions for mean square and almost sure

decay stability of the above system and its stochastic θ-method approximation are inves-

tigated in this paper. The author establishes numerical stability under a monotone-type

condition in unbounded delay setting. An example is presented to illustrate the result.
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1. Introduction

Stochastic differential equations (SDEs) with delay have attracted more and more interest in

many different disciplines, in particular in biology [1]. But its analytic solutions are not widely

available, which is the main motivation for the development of numerical methods. Indeed,

numerical methods for SDEs with fixed delay have returned many results recently, such as

convergence [2], stability [3], and dissipativity [4]. Many SDEs with time-depending delay and

unbounded delay are not included in the above results. The following stochastic pantograph

equations are some of the most interesting cases:

dx(t) = f(x(t), x(αt), t)dt+ g(x(t), x(αt), t)dw(t), α ∈ (0, 1), t ≥ 0.

It obtained results for the above system. Zhang et al. [5] obtained stability of numerical method

for stochastic pantograph equations. A new predictor-corrector method for stochastic panto-

graph equations was given in [6].

Numerical stability plays an important role in numerical analysis. Many results were

established under the linear growth condition [7–10] and the one-sided linear growth condi-

tion [11–14]. In the above literature, the diffusion coefficients of the equation were required to

satisfy the linear growth condition. This excludes many important classes of stochastic systems,

for example, the following well-known stochastic Lotka-Volterra model (see [15]):

dx(t) = diag(x1, · · · , xn(t))[(b+Ax(t))dt+ x(t)dw(t)],
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here b and A are constant. Some stability results for numerical approximations for super-linear

diffusion were concluded. Mao and Szpruch [16] obtained asymptotic stability of the implicit

numerical method in a polynomial growth setting for SDEs without delay. Several years later,

Huang studied the mean-square stability of two classes of the theta method for SDEs with fixed

delay under a coupled condition in [4]. Chen and Wu [17] investigated almost sure stability for

SDEs with fixed delay under a monotone-type condition recently.

To the best of our knowledge, in a super-linear diffusion and unbounded delay setting, there

is only one result as follows. In 2016, Zhou and Hu [18] established the stability of Backward

Euler-Maruyama (BEM) approximation for stochastic pantograph differential equations under

polynomial growth conditions. There are three significant differences between this paper and

[18]. First stochastic θ-method will be the focus of this article, which is an extension of the

BEM method. In fact, the stochastic θ-method will become the BEM method if θ = 1. Second,

this paper considers general unbounded delay, while in [18] the time-depending delay is still

a fixed pantograph delay. Finally, we obtained stability under monotone conditions, which is

more relaxed than under polynomial growth conditions.

Unless otherwise specified, the following notations were used throughout this paper. Let

| · | be the Euclidean norm in Rn. If a, b ∈ R, bac denotes the largest integer number less

than or equal to a, dae denotes the smallest integer number more than or equal to a, a ∨ b
denotes the maximum of a and b, and a ∧ b denotes the minimum of a and b. If A is a vector

or matrix, AT denotes the transpose of A, |A| =
√

trace(ATA) denotes the trace norm of

A. Let R+ = [0,∞) and τ0 ∈ R+ is a fixed constant. C([−τ0, 0];Rn) denotes the family of

continuous functions from [−τ, 0] to Rn. Let Cb
F0

([−τ0, 0];Rn) be the family of F0-measurable

bounded C([−τ0, 0];Rn)-valued random variables ξ = ξ(t) : −τ0 ≤ t ≤ 0. The inner product of

X,Y ∈ Rn is denoted by 〈X,Y 〉 or XTY . Let (Ω,F ,P) be a complete probability space with a

filtration {Ft}t≥0 satisfying the usual conditions; that is, it is right continuous and increasing,

while F0 contains all P-null sets. Let w(t) be a d-dimensional Brownian motion defined on

this probability space. For notational simplicity, the author uses the convention that const

represents a generic constant, which values may be different for different appearances.

The aim of this paper is to examine the decay stability of stochastic θ-method approximation

for the following general unbounded delay SDEs with monotone conditions:

dx(t) = f(x(t), y(t), t)dt+ g(x(t), y(t), t)dw(t), t ≥ 0, (1.1)

with initial data ξ ∈ Cb
F0

([−τ0, 0];Rn), where y(t) = x(t− δ(t)), δ(t) ∈ C1(R+,R+), f(x, y, t):

Rn × Rn × R+ → Rn; g(x, y, t): Rn × Rn × R+ → Rn×m are Borel measurable.

We always assume f(0, 0, t) ≡ 0 and g(0, 0, t) ≡ 0 for the stability purpose of this paper. So

Eq. (1.1) admits a trivial solution x(t, 0) ≡ 0. And assume that δ(0) ≤ τ0 and

η , inf
t≥0

(t− δ(t))′ > 0. (1.2)

These imply that t − δ(t) ≥ −τ0 and is a strictly monotonic increasing function for all t ≥ 0.

Condition (1.2) is a very relaxed restriction and the delay terms in this paper cover many general

unbounded delays, for example δ(t) = t
π arctan t. But [18] considered the fixed pantograph delay

which is a special kind of unbounded delay and many unbounded delays are not included.

As is done in [19], to consider the asymptotic stability with general decay rate, the following

ψ-type function will be introduced, which will be used as the decay function.

Definition 1.1. The function ψ: R→ (0,∞) is said to be a ψ-type function if ψ satisfies the

following conditions:


