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Abstract

This paper gives several structure-preserving schemes for the Degasperis-Procesi equa-

tion which has bi-Hamiltonian structures consisted of both complex and non-local Hamil-

tonian differential operators. For this sake, few structure-preserving schemes have been

proposed so far. In our work, based on one of the bi-Hamiltonian structures, a symplectic

scheme and two new energy-preserving schemes are constructed. The symplecticity comes

straightly from the application of the implicit midpoint method on the semi-discrete sys-

tem which is proved to remain Hamiltonian, while the energy conservation is derived by

the combination of the averaged vector field method of second and fourth order, respec-

tively. Some numerical results are presented to show that the three schemes do have the

advantages in numerical stability, accuracy in long time computing and ability to preserve

the invariants of the DP equation.
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1. Introduction

In this paper, our interest is to study the Degasperis-Procesi equation [1] in the context of

integrable systems, which belongs to a family of third-order dispersive nonlinear equations

ut − uxxt + (b+ 1)uux = buxuxx + uuxxx. (1.1)

The family of PDEs (1.1) includes two important equations: the Camassa-Holm (CH) equation

(when b = 2) [2, 3] and the Degasperis-Procesi (DP) equation (when b = 3) [1]. Both the

CH and DP equations can be viewed as the model of the shallow water and admit peakon

solutions with a superposition of the form u(x, t) = ce−|x−ct|, c > 0. Despite the only difference
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of the associated parameter b, the DP equation is totally different from the CH equation.

The DP equation has not only the peakon solution but also the shock peakon solution such

as u(x, t) = − 1
t+c

sign(x)e−|x|, c > 0 which produces the difficulty to capture the shock wave

numerically. As a consequence, compared with the CH equation, there are only few numerical

methods for the DP equation, including the operator splitting methods [4, 5], the conservative

finite difference methods [6,7], the particle method [8], the Fourier spectral method [9], the local

discontinuous Galerkin method [10] as well as the direct discontinuous Galerkin method [11].

When designing a numerical algorithm, a natural ideal is to construct a numerical integrator

which can carry as much as possible the intrinsic properties of the original systems [12]. In the

derivation of the completely integrability [1], the bi-Hamiltonian structures of the DP equation

are proposed in the forms

mt = B0

δH−1

δm
= B1

δH0

δm
, (1.2)

where m = u− uxx, B0, B1 represent two skew-adjoint operators as

B0 = ∂x(1− ∂2
x)(4− ∂2

x), B1 = m
2
3 ∂xm

1
3 · (∂x − ∂3

x)
−1m

1
3 ∂xm

2
3 , (1.3)

where ∂xm · v := (mv)x. The associated two invariants read

H−1 = −
1

6

∫

u3dx, H0 = −
9

2

∫

u− uxxdx. (1.4)

Therefore, it is straightly to consider symplectic integrators for the DP equation based on these

bi-Hamiltonian structures to preserve the symplecticity of the solution. Theoretical analysis and

numerical experiments have demonstrated that the symplectic integrators are superior in long-

time stability over conventional numerical methods with respect to a wide class of Hamiltonian

systems. For more details, please refer to [12–14] and references therein. In addition to the

symplecticity of the Hamiltonian system (1.2), the preservation of the invariant H−1 or H0 is

also an important aspects of structure-preserving algorithms, which is usually referred as the

energy-preserving method. The maintenance of system energy can also guarantee the stability

in numerical simulations over a long period.

The general framework to construct symplectic or energy-preserving methods for infinite-

dimensional Hamiltonian systems is the method of lines, which first discretizes the spatial

derivatives and then results a system of Hamiltonian ODEs. It is not obvious for the DP

equation due to the complex bi-Hamiltonian structures and the non-local operators. In this

paper, we adopt the high-precision Fourier pseudospectral method for the spatial discretization

because under the periodic boundary condition the corresponding spectral differential matrices

can automatically maintain the symmetry of the discrete operator as that in the continuous

case. Moreover, the extra computational cost caused by the density of the differential matri-

ces can be easily resolved by the fast Fourier transform (FFT) [15]. Once the semi-discrete

Hamiltonian ODEs are achieved, the symplectic or energy-preserving schemes can be systemat-

ically constructed in conjunction with any temporal symplectic integrators [13] or the popular

averaged vector field (AVF) method [16].

The rest of this paper is organized as follows. In Section 2, we briefly introduce the sym-

plectic integrator. In Section 3, a symplectic scheme and two energy-preserving schemes are

constructed. Numerical experiments are presented to verify the superior behavior of the pro-

posed schemes in Section 4.


